Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2000.04b
- /
- Pages.532-534
- /
- 2000
- /
- 1598-5164(pISSN)
Mapping Wavelet Feature Space to KANSEI Space in Image Using Neural Networks
신경망을 이용한 영상의 웨이블렛 특징공간과 감성공간의 매핑
Abstract
복합적인 감성기반 영상 검색 시스템을 구축하기 위해서는 감성속성으로 영상을 찾는 검색은 물론이고, 주어진 영상의 감성특성을 알아내는 과정이 필요하다. 본 논문에서는 영상의 특성으로부터 감성을 매핑하는 신경망을 구축하고 다양한 실험으로 그 가능성을 보인다. 여기에서 영상특징으로 웨이블렛계수와 위치정보를 사용했고, 감성공간으로는 SD법으로부터 14개의 형용사쌍을 추출했다. 이 두 공간의 매핑에 사용된 신경망의 입력으로 영상에서 얻은 RGB 색상당 36개의 총 108개의 웨이블렛 개수를 사용했고, 출력은 14개의 감속속성당 7등급으로 총 98개로 구성했다. 총 6명이 영상을 보고 평가한 감성평가데이터중에서 2명이 각각 평가한 데이터로 신경망을 학습시키고 나머지 10개로 테스트한 경우는 90%이상의 인식률을 보였다. 4명이 각각 90개씩 평가한 데이터로 신경망을 학습시키고 나머지 10개로 테스트한 경우는 90%의 인식률을 보였다. 또한 공통된 감성을 신경망을 통해 인식할 수 있는지 판단하기 위해 600개씩 2명으로부터 얻은 1200개의 데이터에 대해서 1000개를 학습시키고 200개를 테스트하고, 100개씩 4명으로부터 데이터에 대해서 360개를 학습시키고 40개를 테스트해 본 결과, 전자의 경우 오류율 8, 후자의 경우 0.7~0.8 범위였다.
Keywords