P67 ## Identification and Phylogenetic Analysis of SINE-R Retroposon Family in cDNA Library of Human Fetal Brain <u>Ji-Won Lee</u>¹, Joo-Mi Yi¹, Kyung-Mi Shin¹, Seung-Heui Jeon¹, A-Ram Jung¹, Kyung-Won Hong¹, Jae-Won Huh¹, In-Ho Paik², Kyung-Lib Jang¹, Heui-Soo Kim* ¹Division of Biological Sciences, College of Natural Sciences, Pusan National University, Pusan 609–735, Korea ²Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 137–701, Korea ## **Abstract** SINE-R retroposons have been derived from human endogenous retrovirus HERV-K family and found to be hominoid specific. Both SINE-R retroposons and HERV-K family are potentially capable of affecting the expression of closely located genes. From cDNA library of the human fetal brain, we identified seven SINE-R retroposons and compared them with sequences derived from the GenBank database. The SINE-R retroposons from human fetal brain showed 85~97% sequence similarities with human-specific retroposon SINE-R.C2. They also showed 88~96% sequence similarities with the sequence of the schizo-cDNA clone that derived from postmortem tissue from the frontal cortex of an individual suffering from schizophrenia. Phylogenetic analysis using the neighbor-joining method revealed that the seven new SINE-R retroposons from cDNA library of the human fetal brain have been proliferated independently during human evolution. The data indicate that such SINE-R retroposons are expressed in human fetal brain and deserve further investigation as potential leads to an understanding of neuropsychiatric diseases