Experiments on Pseudo Relevance Feedback in Probabilistic Information Retrieval Model

확률적 정보 검색 모델에서의 유사 적합성 피드백 실험

  • 조봉현 (포항공과대학교 컴퓨터공학과) ;
  • 이창기 (포항공과대학교 컴퓨터공학과) ;
  • 안주희 (포항공과대학교 컴퓨터공학과) ;
  • 이근배 (포항공과대학교 컴퓨터공학과)
  • Published : 2001.10.12

Abstract

본 논문은 확률기반 자연어 검색 시스템 POSNIR/E를 이용한 여러 가지 유사 적합성 피드백 방법들이 검색 시스템의 성능 향상에 기여할 수 있는 정도를 보여주고, 확률 기반 정보 검색 시스템에 적합한 유사 적합성 피드백 수행 방법을 제시한다. POSNIR/E는 한국어 자연어 검색 시스템, POSNIR를 기반으로 만들어진 영어 자연어 검색 시스템이다. 이 시스템은 성능 향상을 위한 질의 확장의 방법으로 검색 단계에서 유사 적합성 피드백을 사용한다. 검색 단계에서 영어 태거에 의해 태깅된 사용자 질의로부터 질의어를 추출하고 초기 검색을 수행한다. 유사 적합성 피드백을 위하여 초기 검색 결과 중 상위 5개의 문서에 나타나는 키워드를 중요도에 따라 내림차순 정렬하여 상위 10개의 키워드를 초기 질의어에 확장한다. 이렇게 확장된 질의어로 최종 검색을 수행한다. TREC 평가용 테스트 컬렉션 WT10g와 TREC-9의 질의 적합문서 집합을 이용하여 여러 가지 TSV 함수를 사용하여 검색 성능을 평가 하였다. 실험 결과 유사 적합성 피드백을 사용할 경우 TSV 함수에 확률 모델의 CF 요소 뿐만 아니라 TF 요소 등을 적용 시킬 경우 성능 향상에 기여할 수 있음을 알 수 있었다. 또한 색인어와 검색어로 단일어 뿐만 아니라 복합어도 사용할 경우 성능이 향상됨을 알 수 있다.

Keywords