A Sensing of Glucose Solution and Diabetic Serum using Polypyrrole Nanotubules Enzyme Electrode Immobilized Glucose Oxidase

포도당 산화효소를 고정화한 Polypyrrole 나노튜뷸 효소전극의 포도당 용액 및 당뇨병 혈청에 대한 감응특성

  • 김현철 (전남대학교 전기공학과) ;
  • 구할본 (전남대학교 전기공학과)
  • Published : 2001.05.11

Abstract

We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer on the pore of a polycarbonate membrane. The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for electro-synthesized PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy nanotubules have improved in mass transport, or diffusion. That is because the diffusion occurs through a thin pore wall of PPy nanotubules. The kinetic parameter of PPy nanotubules enzyme electrode with glucose solution was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 23.8 mmol $dm^{-3}$ and $440\;{\mu}A$ respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film. What is more, the enzyme electrode is sensitive to blood sugar of a diabetic serum despite an obstruction of ascorbic acid, oxygen, some protein and/or hormone.

Keywords