Abstract
OH radical concentration have been measured in a methane-air partially premixed flames using PLIF. Excitation lines were selected $Q_{1}(6)$ branch, (1,0) band. The system is consisted of Nd:YAG laser, dye laser and frequency doubler to make pump beam for OH radical. On the direct photographs, flame height increases as fuel flow rate and equivalence ratio increase. And on the PLIF images, OH radical is distributed from premixed flame front to nonpremixed flame front through the flame structure with all equivalence ratio. OH overall concentrations increase with equivalence ratio. At the stoichiometric equivalence ratio, the peak of OH radical concentration exists strongly near the inner cone. As equivalence ratio is changed to richer, OH radical distribution goes thinly and the peak is increased as longitudinal direction. As the flow goes to the downstream, OH radical concentration decreases and broadens, because OH radical reacts with another species after OH formation at the initial oxidization. This phenomenon resembles radial distribution. At the l00cc fuel flowrate, the radial peak of OH radical exists from x/R=l.0 to 1.5.