급 출발하는 정방실린더 후류의 비정상 점성유동의 초기거동

The Early Stage Behavior of Unsteady Viscous Flows past an Impulsively Started Square Cylinder

  • 발행 : 2001.06.27

초록

High-resolution simulations using vortex methods have been performed for simulating unsteady viscous flows around an impulsively started square cylinder. In order to investigate the phenomenon from laminar to transition flow, simulations are performed for Reynolds numbers 25, 50, 150 and 250. At extremely low Reynolds number, flow around a square cylinder is known to separate at the trailing edges rather than the leading edges. With an increase of Reynolds number, the flow separation at the leading edges will be developed. The main flow characteristics of developing recirculation region and separations from leading and trailing edges are studied with the unsteady behavior of the wake after the cylinder starts impulsively. A notable change in the flow evolution is found at Re=150, that is, it is shown that the flow separations begin at both leading and trailing edges of the square cylinder. On the other hand, when Re=250, the strong secondary vorticity from the rear surfaces of the square cylinder increases the drag coefficient as the primary vortex layer is pushed outwards. The comparisons between results of the present study and experimental data show a good consistency.

키워드