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Abstract

Since 1990s, many literatures have shown that connectionist models, such as back propagation, recurrent network,
and RBF (Radial Basis Function) outperform the traditional models, MA (Moving Average), AR (Auto
Regressive), and ARIMA (Auto Regressive Integrated Moving Average) in time series prediction. Neural based
approaches to time series prediction require the enough length of historical measurements to generate the enough
number of training patterns. The more training patterns, the better the generalization of MLP is. The researches
about the schemes of generating artificial training patterns and adding to the original ones have been progressed
and gave me the motivation of developing VTG schemes in 1996. Virtual term is an estimated measurement,
X(t+0.5) between X(t) and X(t+1), while the given measurements in the series are called actual terms. VTG
(Virtual Term Generation) is the process of estimating of X(t+0.5), and VTG schemes are the techniques for the
estimation of virtual terms. In this paper, the alternative VTG schemes to the VTG schemes proposed in 1996 will
be proposed and applied to multivariate time series prediction. The VTG schemes proposed in 1996 are called
deterministic VTG schemes, while the alternative ones are called stochastic VTG schemes in this paper..

1. Introduction

Time series prediction is the process of forecasting a future measurement by
analyzing the pattern, the trends, and the relation of past measurements and
the current measurement [1]. Time series prediction is studied in the several
fields: data mining in computer science, industrial engineering, business
management & administration and other fields. The domains of time series
prediction are various from financial area to natural scientific area: stock
price, stock price index, interest rate, exchanging rate of foreign currencies,
the amount of precipitation, and so on. The traditional approaches to time
series prediction are statistical models: AR (Auto Regressive) , MA (Moving
Average), ARMA (Auto Regressive Moving Average), and Box-Jekins
Model [1]. These models are mainly linear models and the trends of time
series should be analyzed before applying them to time series prediction.

Literatures have shown that neural-based approaches, such as back
propagation, RBF (Redial Basis Function), and recurrent network,
outperform the traditional approaches (statistical models) in the performance
of predicting future measurements. In the neural based approaches, back
propagation is used most commonly; it has the ability of universal
approximation [2]. In 1991, A.S. Weigend and D.E. Rumelhart proposed the

first neural based approach, back propagation, to time series prediction {3]. N.

Kohzadi presented that back propagation outperforms one of statistical
models, ARIMA, in the performance of forecasting the price of cow and
wheat flour, in 1996 [4]. D. Brownstone presented that back propagation is

more excellent than multi linear regression in forecasting stock market
movement [5]. M. Milliaris also presented that back propagation is over one
of traditional models, Black-Scholes model, in the performance of
forecasting of S&P 100 implied volatility [6]. Note that Black-Scholes model
is most commonly applied to predict S&P 100 implied volatility in the
statistical models [6]. A.U Levin proposed back propagation in the selection
of the beneficial stocks [7]. In 1997, J. Ghosn and Y. Bengio predicted the
profits of the stock using neural network {8]. So, These literatures show that
neural-based approaches should replace the statistical ones to time series
prediction.

The neural-based approaches require the enough length of historical data.
Essentially, neural networks require many training patterns enough for the
robust generalization {2]. Training patterns for the neural network, what is
called time delay vectors, are generated from the time series in the training
period by sliding window. The longer the historical length of time series in
training period, the more the training pattemns generated. The number of
training patterns influences the generalization performance.

Actually, training pattemns are not always given enough for the robust
generalization. It is necessary to maintain the robust generalization
performance, although training patterns are not enough. It is proposed that
the genenalization performance is improved by generating derived training
patterns from the original ones and adding the derived training pattems to the
original ones. Here, let’s assume that the training patterns given originally
are called natural training patterns, while the training patterns generated from
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them are called artificial training patterns. The use of both natural training
patterns and artificial training pattems for training the neural network
improves its generalization performance. In 1993, Abu-Mustafa proposed the
use of hints, the artificial training patterns generated by the prior knowledge
about the relations between input vector and output vector of the natural
training patterns [9]. In 1995, Abu-Mustafa presented that hints contributed
to reduce the prediction error in forecasting the exchange rate between USD
(US Dollar) and DM (Deuch Mark) {10]. In 1994, D.A. Cohn, Z
Ghahramami, and M. J. Jordan proposed active learning, in which the neural
network is trained by generating several artificial training patterns from each
natural training pattern, simultaneously [11]. In 1995, A. Krogh and J.
Vedelsby applied active learning to multiple neural networks [12]. In 1996,
G. An proposed the scheme of generating artificial training patterns by
adding noise to each natural training pattern and training the neural network
with both artificial ones and natural ones [13]. And he validated that his
scheme contributed to reduce the generalization emor through the sine
function approximation and digit recognition [13]. In 1997, S. Cho, M. Jang,
and S. Chang proposed the scheme of training neural network with the
natural training patterns and the artificial ones. The artificial training patterns
are called virtual samples, in which input pattern is randomized and the
output pattern is determined with the committee of neural networks [14]. D.
Saad and S.A. Solla applied the combination of An’s scheme and weight
elimination in the process of training the neural network [15]. Y. Grandvalet,
S. Canu, and S. Boucheron proved that G. An’s scheme improve the
generalization performance theoretically [16].

As mentioned above, Abu-Mustafa’s scheme needs the prior knowledge
about the natural training patterns; this scheme can not work without the
prior knowledge. Actually, the prior knowledge to generate hints is not
always given. In the D.A. Cohn’s scheme and Cho’s scheme, the generation
of artificial training patterns is rule of sum and very heuristic. The effect of
both schemes depends on the process of generating the artificial training
patterns. Except Abu-Mustafa’s scheme, almost mentioned schemes are
validated through toy experiments: the function approximation [13]{14] and
robot arm kinematics [14].

In 1996, T.C. Jo proposed VTG (Virtual Term Generation) schemes of
improving the precision of time series prediction by estimating the midterm
X(t+0.5) between X(t) and X(t+1) [17]. Virtual term is the estimated value of
X(t+0.5), between X(t) and X(t+1), while actual term is the given term in the
time series [17]. VTG (Virtual Term Generation) means the process of
estimating virtual terms, and VTG schemes are the techniques of estimating
virtual terms. In 1997, T.C. Jo proposed the several schemes of estimating
midterms and applied them to forecasting the annual number of sunspots
[18]. All of the proposed VTG, schemes contributed to reduce the predicted
error [18]. In 1998, T.C. Jo applied the VTG schemes to multi-variable time
series prediction: the prediction of monthiy precipitation in west, middle, and
east area of the State, Tennese of USA [19]. In 1999, T.C. Jo applied the
VTG schemes to forecasting S&P 500 stock price index in financial area [20).
The VTG schemes in [17] and [18] are called deterministic VTG schemes in
this paper. Deterministic VTG schemes means the method of estimating
virtual terms with a particular equation. The deterministic VTG schemes
proposed in [17] and [18] are mean method, 2nd LaGrange method, and 1st
Taylor method. Mean method is the scheme of estimating the virtual term
X(t+0.5) by averaging the adjacent acmal terms, X(t) and X(t+1). Second
LaGrange method is the scheme of estimating virtual terms with the equation
derived from 2nd Lagrange interpolation. All of deterministic VTG schemes
reduced the prediction error compared with the case of naive neural-based
approach: the neural-based approach to time series without VTG.

In this paper, altemative VTG schemes will be proposed and compared with
the deterministic ones. These VTG schemes are stochastic ones: uniform
VTG scheme, normal VTG scheme, and triangle VTG scheme. Stochastic
VTG schemes are the methods of estimating virtual terms with random value,
while deterministic VTG schemes do not use random values to estimate
virtual terms. The estimated values are variable to each trial of VTG with
same scheme in stochastic VTG schemes, while the estimated values are
constant to each trial of VTG with same scheme in deterministic VTG
schemes. The advantage of stochastic VTG schemes over the deterministic
VTG schemes is the diversity of virtual terms with same scheme. This
advantage means that the stochastic VTG schemes have the potential
possibility of optimizing the estimated values of virtual terms with several
trials or evolutionary computation. Another advantage over the deterministic

VTG schemes is simplicity in its application to VTG, except mean method.
Both second LaGrange method and. first order Taylor method are more
complicated than mean method or the ‘stochastic VTG schemes. The
estimated value of each virtual term is between two adjacent actual terms;
the value is almost mean of them. In this paper, the basis of the stochastic
VTG schemes is mean method in deterministic VTG schemes; the estimated
value of each virtual term is determined by adding the mean of the adjacent
actual terms and random value. The stochastic VTG schemes proposed in
this paper are uniform method, normal method, and triangle method, based
on the distribution for generating random values.

The model of neural network applied to time series prediction in this paper is
‘backpropagation. The model, backpropagation, is used most commonty in
the models of neural network. Although there are many models of neural
networks in the world, backpropagation is applied to majority of fields in
supervised learning. The reason of using backpropagation commonly is that
the model is implemented most easily in the models of neural network in the
world. The learning algorithm of backpropagation will be included in [2],
and skipped in this paper.

In the organization of this paper, both kinds of VTG schemes will be
described in the next section. In third section, two application methods of
backpropagation to multivariate time series prediction, separated method and
combined method, will be described [21]. In fourth section, conditions,
procedure, and results of experiment to compare couple kinds of VTG
schemes will be presented. The data used in the experiment is the artificial
time series generated from a dynamic system, Mackay Glass equation. In the
fifth section, the meaning and discussion of this studies and remaining tasks
to improve the proposed scheme will be mentioned as the conclusion of this
paper.

2. VTG Scheme

In this section, the schemes of estimating virtual terms will be described.
There are two kinds of VTG schemes; one kind is deterministic VTG
schemes proposed in [17] and 18], the other kind is stochastic VTG schemes
proposed in this paper. Deterministic schemes are the schemes of estimating
each virtual term with a particular equation, while stochastic schemes are the
schemes of estimating each virtual term with an equation and a random value.
Deterministic VTG schemes consist of mean method, second order
LaGrange method, and first order Taylor method. And stochastic VTG
schemes consist of uniform method, normal method, and triangle method.

Deterministic VTG schemes

This section will describe the VTG schemes proposed in 1996 and 1997:
mean method, 2nd Lagrange method, and 1st Taylor method {17] [18]. In
mean method, a virtual term, is estimated by averaging the two values, X(t)
and X(t+0.5) like the Eq.(1).

B +0.5) = (X () + X+ 1))
In 2nd 2 LaGrange
method, two 2nd polynomials, P,(x) and P,,(x) are constructed based
on Lagrange interpolation like the following this, in the assumption that the

given points are (0, X(W), A, X(t+1)), (2, X(t+2)) and
(0, X(t-1)), (1, X)), (2, X(t+1)).
P(3) = S X+ D)x - Xt +2)
—2x— X)) x- Xt +2)
+(x=-X()(x-X(+1)]
| Pa(0 =3l XO) 5= X(+1)
—2(x=X(t=1)(x- X(+1))
The virtual term, +(x- X(t-1))(x- X(1))]  X(t+0.5) is

estimated by averaging values of P((0.5) and P, (1.5), like Eq. (2).
X(t+0.5)= P, (0.5) = P, (1.5)

) 1

X({(t+05)= E(P21(0~5) + Py, (1.5)-——(2)

0or T-1,
either P (0.5)or.

But if is
X(t+0.5) is estimated with Py (1.5)
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X((t+0.5) = Py (0.5) if t=0

X{(t+0.5) =Py (1.5) if +=T-1

The nodes in the output
layer generated the probability of the category given the set of words as the
input pattern. Therefore, output pattern is a numerical vector consisting of
normalized vales from O to 1, like the backpropagation. The process of
computing a vector consisting of probability of each category from the set of
words selected from a particular document is called generalization, and will
be discussed in the subsection 2.3.

Stochastic VTG schemes
The base equation of stochastic VTG schemes is eq.(3).

z\ﬂ’(t+045)=%(X(t)+X(t+1))+g-—_(3)

In the above equation, the estimated value of X(t+0.5) is the summation of a
random value, £ , and the average of two adjacent actual terms. The
consideration of the stochastic VTG schemes is the method of generating a
random value, £ .

Uniform method of stochastic VTG schemes is the scheme of estimating
each virtual term with the summation of the average of adjacent actual terms
and a random value generated from the uniform distribution in figure 1.

1

LAX@E+1)-X (@)

>
_I(X(t)— X(t+1) ,(X(t+l)— X()
2 2

Figure 1. The uniform distribution for generating a random value

In figure 1, the estimated value of each virtual term from X(t) to X(t+1) with
constant probability. The x-axis means the random value, &€ , while y-axis
means the probability of generating each random value & . The probability
is constant to all random values within the given range.

The second stochastic method, normal method, is the method of estimating
virtual term with the summation of their average and the random value, &,
is generated based on normal distribution. In its parameters, mean is 0 and
the standard deviation is [1/2(X(t+1)- X(1))|-

The third stochastic method, triangle method, is the scheme of estimating
each virtual term with the summation of their average and the random value
based on the distribution in the figure 2. Unlike the uniform distribution, this
scheme has the most probability that the estimated value of a virtual term,
X(t+0.5) is the average of two adjacent actual terms, X(t) and X(t+1).

? 24X @+~ X))

-

_I(X(r)—X(z+1)) l(X(m) “X@)
2 2

Figure 2. The triangle distribution for generating 2 random variable

3. Application of Back Propagation
This phase is to predict the value of future by composing training sample
from a time series including virtual terms. For first, the neural approach to
time series prediction is mentioned.
Without virtual terms, the time series is like the following this.

X1(1), X1(2), .... XUT)

Xn(1), Xn(2), .... .Xn(T)

The training pattemn from the above time series is like the following this in
separate model, with the shift of 1 step[10]. These pattems are composed like
that from univariate time series in [1][3]. In this case, the variables belonging
to the given time series are independent among them.
input: [Xk(t-d), Xk(t-d+1), ..., Xk(t-1)]
output: Xk(t)
But in combined model, the training pattern from above time series is like
the following this and the variables included in the time series are influenced
among them.
input:[ X1(t-d), X1(t-d+1), ...  X1(t-1), ....., Xn(t-d), Xn(t-d+1), .... ,Xn(t-1)]
output: Xk(t)
With virtual terms, the time series is like the following this.

X1Q1), XI(L.5), ... XI(T)

X2(1), X2(1.5), ..

Xn(1), Xn(1.5), .... ,.Xn(T)
The training pattern from the above time series including virtual terms is
made like the following this in separate model. This case is same to that in
univariate time series presented in [2], [12], [13], and, [19}.
input: [Xk(t-d), Xk(t-d+0.5), .... , Xk(t-1)]
output: Xk(t)
In combined model, the training pattem from the time series including virtual
terms is like the following this.
input: [ X1(t-d), XI(t-d+0.5),
d+0.5), ..., Xn(t-1)]
output: Xk(t)

XI(+1), Xn(t-d), Xn(t-

4. Experiment & Results
In order to validate the insertion of this paper, conditions, procedures, and
results of this experiment will be described in this section. Both kinds of
VTG schemes are applied to multivariate time series prediction, and both
separated model and combined model mentioned in the precious section are
applied to neural-based approaches to multivariate time series prediction.
The data of time series used in this experiment is artificial time series
generated from the Lorenz equation, a dynamic system. The model of neural
network used in this paper is back propagation, which is used most
commonly in the models of neural network. In this experiment, both VTG
schemes are compared with naive neural based approach and An’s scheme of
generating artificial training patterns proposed in [13].
The time series data is generated from the following equation called Lorenz
equation.
Ax (f)=o(x,(¢) - X ®
Ax, ()= p-x, (1) = x, (1) — x,(1)x,(2)
Ax, (1) =x,()x, () — bx; (1)
Three variables are determined and 1000 terms in the time series are
generated from the above equation. Training period is from 1 to 700 and test
period is from 701 to 1000. In the above equations, 0", o0, and b are
given parameters. In this experiment, three groups of time series data are
used by modifying these parameters
The neural model of this experiment is back propagation. The architecture of
this model is presented like the table 1.

Table 1. The architecture of back propagation in this experiment

Input | Hidden|{ Output
Nodes | Nodes | Nodes
Separated] Naive Approach 10 10 1
An’s Scheme
Both VTG Schemes 19 10 1
Comb: Naive Approach 30 10 1
An’s Scheme
Both VTG Schemes 57 10 i

In the case of time series including virtual terms, d-1 virtual terms are
included in the sliding window, if the size of sliding window is d. The total
number of terms within the sliding window becomes 2d-1. The leamning rate
of this mode is set 0.1 and the initial weight is given at random. The training
epochs is fixed to 5000 in any case. The measurement of the time series
prediction is prediction error, MSE (Mean Square Error)
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The results of the first group of time series data are presented like the table 2.
The parameters of this data is given as & =0.99, p=2.25, and
b=1.775
Table 2. The results of the first group:
=099, p=225b=1.775 (MSE*10%)

1* Variable 2™ Variable 3" Varisble

28 £y foka) g &3 &g
No VTG 4.967 1.413 4.713 1.778 2.125 1.521
An (0.0.05) 3332 1416 3380 1456 2912 1213
An (0,0.1) 3.313 1319 3.295 1.434 2.918 1.092
Mean 1.085 0.9360 1.263 0.7791 1.082 0.6758
E Lag 1.049 0.6681 0.9181 0.9123 1.049 0.6543
* Tayor 0.2727 0.08016 03318 0.4968 0.6092 0.4525
Uniform 0.9594 0.07418 1114 0.1325 0.9645 0.8247
Goussian 1252 0.2341 1.198 2919 1.055 09826
Triangle 0.9813 0.2312 1.462 1578 0.9252 0.7420

The results of the second group are presented in the table 3. Its parameter of
the above equation is givenas & = 0.94, p =2.20,and b=1.650

Table 3. The results of the second group:
6 =094,p=220b=1.650 (MSE*10%)

1* Verisbie 2™ Varisble 3 Variabie

ksl 3 #3 3 bl R
No VTG 1.842 0.9126 1.890 0.9754 1.387 2.603
An (0,0.05) 1,470 0.8828 1.459 0.9426 1.023 1.425
An(0,0.1) 1.458 0.8509 1.464 0.9321 1.012 1.490
Mean 1074 | 0.6785 | 1058 | 0.7426 | 05327 | 0.4990
™ Lag 0.6791 0.4998 0.6320 0.6252 0.4644 0.4472
I"Tnyw 0.7668 0.2371 0.4816 0.2746 0.4709 0.2504
Uniform 0.9206 0.5911 1.354 0.6226 0.4757 0.4980
Gaussian 08193 | 06206 | 1383 | o.664a | 06562 | 0.5992
Triangle 09417 | 06570 | 0.7412 | 0.6804 | 0.6035 | 0.5842

The results of the third group are presented in the table 4. Its parameter of
Lorenz equation is givenas o = 0.90, p = 2.30, and 5=1.0

Table 4. The results of the third group:
6=090,p=230,b=1.0 (MSE*10%)

1* Variable 2™ Variable 3™ varisble

faa) £ #e £ #e | ¥
No VTG 564 | 1796 | 5245 | 357 | 2961 | 17n
An(0,005) | 3739 | 1796 | 3845 | 2834 | 2028 | raey
An (0,0.1) 3.722 1.697 1.853 2.771 2.128 1.524
Mean 1.514 1.267 1.659 1.687 1.406 1.043
F Lag 1.436 0.8027 1.269 1.754 1.394 0.847%
™ Tayor 0.2587 0.1273 0.2016 0.2133 1.072 0.6377
Uniferm 1340 | 08361 | 1348 | 1579 | 1434 | 093
Geussian 1.660 1.288 2.353 1.924 1.578 1.222
Triangle 1.883 1.294 2.089 1.821 1.550 1.066

From table2 to table 4, An’s scheme improved the performance of time
series prediction about 10-20% compared with naive approach. Deterministic
VTG schemes improved its performance even more than 50%; the prediction
error is reduced less than half of the naive approach and An’s scheme.
Stochastic VTG schemes improved its scheme compared with naive neural-
based approach and An’s scheme outstandingly but are little inferior to the
deterministic schemes except mean method.

5. Conclusion

This paper proposed the altemative VTG schemes and showed that these
schemes reduced prediction error compared with nafve neural based
approach and An’s scheme and they are comparable with deterministic VTG

schemes proposed [17] and [18]. The proposed VTG schemes have
advantages over deterministic VTG schemes; stochastic VTG schemes have
the diversity in the estimation of virtual terms. This provides the potentiality
of the application of evolutionary computation to optimize virtual terms. The
optimization of virtual terms means the maximization of prediction
performance. Although the stochastic VTG schemes are little inferior to the
deterministic VTG schemes in general, the optimization of virtual terms with
evolutionary computation will improve the prediction performance compared
with the deterministic VTG schemes.
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