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Optimum Shape Design of a Rotating-Shaft Using ESO Method
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ABSTRACT
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1. INTRODUCTION

In the design of modern rotating machinery, it is often
necessary to increase the performance of rotor-bearing
systems. This aim requires designing a system compact
and lightweight which greatly saves fuel usage during its
operation. Since the critical speed range influences the
performance and safety of the whole system, it may be
necessary and better to constrain the critical speeds and
the resonance response in the design process to avoid
large vibrations. And the minimization of response
amplitudes within the operating range of the rotor system
may be the most primary design object. The problem of
weight minimization usually arises from the revision of
an existing rotor-bearing system to increase the system
performance. Many papers have shown that the system
parameters, including the distribution of the mass and
stiffness of the shaft and the coefficients of the bearings,
have an influence on the dynamic characteristics of a
rotor-bearing system.!"®  The optimum shape design of
rotor system with restrictions on critical speeds using
genetic algorithm has been studied by Choi and Yang, @
In this paper, the present study will focus on the design
of a rotor-bearing system with minimum shaft weight,
minimum Q factor and enough separation margin of the
critical speed under the requirements of dynamic
behaviors such as dynamic stress and steady-state
unbalance response, to increase the performance of a
rotor-bearing system.

« R J AT
E-mail : bsyang@mail.pknu.ac.kr
Tel : (051) 620-1604, Fax : (051) 620-1405

w BRUStE et

ESO in its original form optimizes a structure by slowly
removing elements with low stress, approaching towards
a fully stressed design. ® The primary goal of the
research and development of ESO is to provide the
engineering industry with a practical and "‘user-friendly"
optimization method to assist in the design process.
Hence ESO has been extended to accommodate various
optimization criteria and is becoming a more practical
method. Some of these researches include the
implementation of stiffness and displacements as
optimization criteria and the applications in multiple load,
non-linear, dynamic and buckling problems.®* Querin
et al. ¥ extended the ESO method to add as well as
remove elements, namely bidirectional ESO (BESO).
This means that the initial design no longer had to be the
maximum design domain. Thus the solution time may be
reduced especially if the user specifies a near optimal
topology to be the initial design. However, this
knowledge is not always available and the typical long
solution time of ESO has been an obstacle to its practical
applicability as a design tool.

In traditional ESO method, the size of FE element in
each step is usually fixed. To get fine shape of optimum,
the design model should be divided more detail, and it
takes very long time because FE analysis is executed in
each step. To overcome these demerits of ESO shown in
previous works, new method which is faster and more
accurate is investigated in this paper by means of
applying variable FE element in each step. As the design
variable is diameter of each element, the FE element that
should be removed or added is type of a shell which has
an unit width of direction to diameter. Prior to applying
this new approach, eigenvalue and sensitivity analysis of
initial model is executed, and then calculate the
sensitivity numbers of object function for the diameter of
each element. And the sensitivity numbers of each
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element are compared and some elements are added or
removed(in this model, increase or decrease the diameter
of element) in proportion to sensitivity numbers. As the
iteration number increase, the size of element becomes
more precisely and finally convergent to optimum shape.

The proposed ESO method is used to find the
optimum shape of a rotor shaft and bearing so that the
optimized rotor-bearing system can yield the minimum
shaft weight, Q factor and enough separation margin of
critical speed with the dynamic constraints. The results
show that the new ESO algorithm can reduce the weight
of the shaft and Q factor and yield the critical speeds as
far from operating speed as possible with dynamic
behavior constraints.

2. EIGENVALUE AND _SENSITIVITY
ANALYSIS

The system equations that describe the behavior of
the entire rotor-bearing system are formulated by
following equation

Mp+Cp+Kp=0" )
where, M (= M + M ) is the mass matrix, M, M,
are the translational and rotational mass matrices,
C(=-QG+C,),K(=K, +K,) are the damping and
stiffness matrices, G is a gyroscopic matrix, K, C,
are the stiffness and damping matrices of bearing, and
Q" is a force vector, respectively.

2.1 Eigenvalue Analysis

In setting up the complex eigenvalue problem for the
whirl frequencies of the system governed by Eq. (1), it is
convenient to write the system equation in the first order
state vector form

Aq+Bg=0 )
where

ol Shofs b o)

For assumed harmonic solution g =ge* of Eq. (2),
the associated eigenvalue problem is
(AA +B)g=0 3)
where A is the eigenvalue. The eigenvalues are
usually complex eigenvalues and conjugate roots
A=a; tio; 4)
where a; , ®; are the growth factor and the
damped natural frequency of ith mode, respectively.
The Q factor @, in the critical speed is expressed in
term of the real and imaginary parts of complex
eigenvalue.

'= o} + o} ©

e - 2a,
where ¢, is the damping ratio of ith mode.

A

2.2 Sensitivity Analysis

In the ESO method, a key issue is to evaluate the
efficiency of material used in the design domain. For a
static optimization problem, the efficiency of material
can be evaluated by considering the stress level of each
particular element. If the stress level of an element is
very low, it means that the material of this element is not
used efficiently and therefore can be removed. For the
natural frequency optimization problem, there is not any
external dynamic load in the system because the system
is in a free vibration state. Thus, it is impossible to use
the stress level to determine the efficiency of material for
an evolutionary natural frequency optimization problem.
In order to solve this problem, it is essential to evaluate
the individual contribution of an element to the natural
frequency concerned since finite elements are basic cells
of the design domain.” Although the sensitivity of a
natural frequency, which is usually expressed in the
differentiation sense, can be used to evaluate the
efficiency of an element, the contribution factor of an
element to the natural frequency is used in this study to
evaluate the efficiency of the element because it is
expressed in the difference sense and therefore may be
most suitable to the finite element analysis.

2.2.1. Sensitivity analysis of eigenvalue
It can be expressed to Eq. (6) considering ith mode
complex eigenvalue and eigenvector from Eq. (2)
(4A+B)g,; =0 (6)

where,
| K ¢ %
#15 uh i

5

Taking the derivative of Eq. (6) with respect to design
parameter d; gives

O g2, A, B i+ Bz
ad, od, " od, ad
; @

Then premultiplying Eq. (7) by @;
04 1 T 04 r OB
il e + 107 L0, +0f 0.
6d} ¢l q’l + I(pl adj <PI +¢l adj (pl

+.piT(;.iA+B)§’f=o (8)

J

Solving Eq. (8) to obtain the eigenvalue sensitivity
gives
oA; AP +q
Fr _LiPi v )
j Pi
where,

Pi=0/ A9, =0[Co, +2,0 Mg,
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2.2.2, Sensitivity analysis of Q factor

Similarly by differentiating Eq. (5) with respect to design
parameter d i the derivatives of Q factor can be
obtained as

F) a.:: a0 + 0.0
— Q0 =—2at+o? - —L 1V an
od;, ™" 2 v [ 2. 2

J 2a; 2a;4af +w;

where

L. T ) L
od;,  |od, od;, \od;

2.2.3. Sensitivity of weight
The total weight of shaft can be expressed as follows

N, 2
=" pir o= 4" (12)
i=l 4

where, /;,dp;,dy;is the length, outer diameter and
inner diameter of ith element, p is density of element
and N, is the total number of element, respectively.

As the outer diameter of each element is taken to
design variable in this paper, the derivatives of other
element are zeros and finally the derivatives of total shaft
weight for jth element diameter are of the form

W Py - dp) (13)

ad; 2

3. OPTIMIZATION APPROACH

3.1 Formulation of Optimum Design

In this study, the objective function F(x) is
composed with the shaft weight #(x), natural frequency
@,(x) and Q factor Q.(x). For this exmple, operating
speed(3000 rpm) is between the 2™ natural frequency
(2259 cpm) and the 3™ forward natural frequency
(9071cpm). The operating speed is near the 2™ forward
natural frequency and the 3™ natural frequency is far
from the operating speed sufficiently. So the objective
function is as follows;

F(x)=a W), p2 &, y 25 3 Minimize (14)

Wo g Qo

where q,f,y are weighting factors. Each value of
the objective function is divided by the reference value to
make the objective function dimensionless and all value
of three items having equal value range because three
items in the objective function have a different unit and
scale. The constraints on the bending stress and
unbalance response are taken as follows:

gl(x)=|amax|—a‘ <0
82(X) =|Bpnar] = 8" <0 (15)
where o, and &, denote the maximum bending
stress and response in the steady-state. o and &
represent the allowable stress and allowable steady-state
response, respectively.
From Egs. (10), (11), (13) and (14), the sensitivity
number SN of objective function is defined as follows
oF a oW ow 8
6dj W, 6dj Wy 6dj o 6dj
Hence, the solution procedures using sensitivity

number of multi-objective optimization problem are
outlined as follows.

3.2 ESO Procedure Using Sensitivity
Number

The solution procedures using sensitivity number
(SN) of multi-objective optimization problem are
outlined as follows.

Step 1: FE analysis of new model which produces
total weight W, natural frequency , and Q factor g,
and calculates the value of objective function F(x) using
Eq. (14).

Step 2: Sensitivity analysis which produces SN of
objective function for each diameter of element using
Eqgs. (9),(11), (13), and (14).

Step 3: Change the diameter of each element in
proportion to SN numbers. If the sensitivity number of
ith element is positive, decrease the diameter of this
element, because sensitivity number means the change
of objective function per positive unit change of design
variable and the goal is to minimize the objective
function. And then it needs to be determined how much
change will be accomplished. In this paper, following
changing criterion was used.

SN;
—SJV—I(dimax -d;) Cp SN, <0
8d; = o 17)
i
SN; (d,- —d,-min) Cp : Otherwise
SN,

max

where, &d,is the amount of change of ith element,
SN is the sensitivity number of ith element, SN, is the
maximum absolute value of sensitivity number among all
element, d; is the diameter of ith element, C, is the
changing rate of the shaft at each iteration,
dimax » imin are the maximum and minimum allowable
diameter of ith element at present iteration(jth).

If the sign of SN of this element in present iteration is
changed from previous iteration, there must be the
optimum between present diameter and previous
diameter. So it needs to change the limit of diameter as
follows:
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[dijmax =dijo 2 SN SN, ;. <0, SN, ; <0
| @i jmin =dijr 3 SNy SN, ;4 <0, SN, ;20

Step 4: Repeat Step 1 to Step 3 until following
convergence criterion Cp  is satisfied.

(18)

F.4-F;
LL‘_JISCC (19)
j-1

<. NUMERICAL RESULT AND DISCUSSION

In order to illustrate how the ESO can be used to find
the optimum value of a shaft diameter, a numerical
¢xample is shown and discussed below. In example, ESO
is used to minimize the shaft weight, Q factor and yield
the critical speed so far from the operating speed as
possible. The optimum model is compared with an
original model in the unbalance response, Campbell
ciagram. Figure 1 shows the three-phase induction motor
of a numerical calculation model. The principle data for
this motor are listed in Table 1.

fan rotor

bearing

Fig. 1. Schematic diagram of motor model

Table 1. The configuration data of induction motor.

Motor 2 Pole, 50 Hz, 2200 kW

‘Shaf L=2.847 m, W=5.207 kN
) E =206 GN/m?, G = 83.06 N/m®

y =77 kKN/m’

Bear 2 lobe bearing (preload factor = 0.5)
. (C = 0.1 mm, L = 150 mm, D = 125
ing

mm )

The side constraints of the design variables are given
ty
12.5mm<d; £20.5mm, i=1tol9
d, ~d,,dy,dy,d; ~dg: will not change
In Eq. (14), W, w, and Q, are set to initial
value and a= f=1, y=0.004. The weighting factor of
veight and natural frequency is set to be same and
veighting factor of Q factor is smaller than others
because Q factor is much influenced by bearing than
saape of shaft. In ESO algorithm, the changing rate of
siaft diameters at each iteration is set to 55% of
changeable region ( Cp =0.55) and the convergence
criterion factor ( C ) is set to 0.00005.
Figure 2 shows the shape of an original, intermediate
a1d optimum shaft. The gray area shows fixed elements.
It can be seen that which element is more effective to

decrease the objective function. Figure 3 shows the
change of shaft weight, 2" natural frequency and
objective function in each iteration. We know that these
parameters are convergent within several times of
iteration from Fig. 3.

Figures 4~5 are shown a comparison of critical
speeds and unbalance responses before and after
optimization. Comparing with an original model, the 2nd
critical speed decreased from 2259cpm to 1985¢cpm and
so the operating speed sufficiently away from resonance
region. To analysis the unbalance response, the allowable
residual unbalance is calculated on the basis of ISO G6.3.
Obtained the allowance residual unbalance is divided
into two and applied to both ends of a core. Figure 5 is
shown the unbalance response in the center of core. The
unbalance response of an optimum model (43.4pm) in
the operating speed is reduced about 11.5um compared
to an original model (54.9pm) in Fig. 5. Also the
maximum unbalance response at the bearing is satisfied
the vibration limit value (50.8um) of API standards in

| s e | 22

- -lll
e
a) Original design

b) After 1 iteration :

e ] T T

¢) After 3 iterations

d) After £ iterations

gi,a ¢) Optimum {After 18 iterations)

Fig, 2. Comparison of shaft shapes
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Fig. 3. Convergence characteristics of objective function
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Fig. 5. Unbalance response
5. CONCLUSIONS

In this paper, the dynamic optimal design of a motor
shaft was studied by using advanced ESO method,
considering the diameter of the motor shaft. The
sensitivity number of rotating system is investigated to
apply the ESO method which was used to optimize the
structural system, Through the optimization to minimize
shaft weight and Q factor and to avoid the resonance
region sufficiently in some stress and dynamic response
constraints, the results show the capability of ESO
method to rotating shaft. The total shaft weight, critical
speeds and the unbalance response of a motor can be
significantly improved by the modification of shaft
diameters, even without changing each element length of
the rotor-bearing system.
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