J2

Determination of Translocation and Deacylation Rate Constants for Complex Formation between Serpin and Protease

Jong-Shik Shin* and Myeong-Hee Yu
Protein Strain Research Center, Korea Institute of Science and Technology, P.O.
Box 131, Seoul 130-650, Korea

Serpins inhibit target proteases by forming tight acyl complex via incorporation of the reactive center loop into β-sheet A. Metastability of the serpins control the translocation of the protease from the initial binding site to the opposite pole of the serpin. Recently the crystal structure of a serpin-protease complex revealed that the active site of the protease is distorted. However, controversies on kinetic mechanism remain mainly due to difficulties in kinetic measurement of acylation (k_{ac}) , translocation (k_{tr}) , and deacylation (k_{deac}) steps. To address the problem, we analyzed stopped-flow kinetics of fluorescence energy transfer from the tryptophans in trypsin to a dansyl group labeled at Cys³¹⁴ of α_1 antitrypsin during complex formation. Under pseudo-first order reaction conditions with protease in excess, time-resolved fluorescence change between trypsin and α_1 -antitrypsin showed a double exponential growth function. The pHdependence of each phase revealed that fast and slow phases correspond to acylation $(k_{ac}=31.2 \text{ s}^{-1})$ and translocation $(k_{tr}=1.76 \text{ s}^{-1})$ steps, respectively. Deacylation rate constant was determined to be 0.08 s⁻¹. Compared to hydrolysis kinetics of octapeptide (RCL of α_1 -AT from P_4 to P_4), these results suggest that acylation is facilitated whereas deacylation is strongly suppressed.