Air-Borne Selection in Micro-Genetic Algorithms for Combinatorial Optimization

  • Published : 2001.10.01

Abstract

The current research field to find near-optimum solutions explores in a small population, which is coined as Micro-Genetic Algorithms (${\mu}$GAs), with some genetic operators. Just as in the Simple-Genetic Algorithms (SGAs), the ${\mu}$GAs work with encoding population and are implemented serially. The major difference between SGAs and ${\mu}$GAs is how to make reproductive plan for more better searching strategy due to the population choice. This paper is conducted to implement ${\mu}$GAs in order to achieve fast searching for more better evolution and associated cost evaluation in global solution space. To achieve this implementation, the Air-Borne Selection (ABS) for a new reproductive plan is developed as new strategic conception for ${\mu}$GAs. In this paper, it is shown that the ${\mu}$GAs implementation reaches a near-optimal region much earlier than the SGAs implementation. The superior ...

Keywords