Evaluation of Network Reliability
Using Most Probable States

Dae Ho Oh!, Dong Ho Park? and Seung Min Lee®

Abstract

An algorithm is presented for generating the most probable states in
decreasing order of probability, given the reliability of each unit. The
proposed new algorithm in this note is compared with the existing
methods regarding memory requirement and execution time. Our method
is simpler and, judging from the computing experiment, it requires less
memory size than the previously known methods and takes comparable
execution time to previous methods for an acceptable level of criterion.

1. Introduction

Network reliability is considered to be an important factor for assessing the
effectiveness of an existing or a newly proposed network system. But exact
computation of network reliability is, in general, very complex and is quite often
intractable mathematically. Since the size of state space increases exponentially as
the size of unreliable unit increases, the evaluation of network reliability by
enumerating all possible network states is useful only for a small size of network,
however such evaluation seems impractical for a network with a large number of
units. Therefore, it is necessary tc develop an alternative way of approximating
the exact network reliability or its bounds. Li and Silvester(1984) suggested "most
probable” states for computing bounds of the network reliability. Since these states
of high probability account for a large fraction of the total probability, this
approach is considered effective in practice. Method of Li and Silvester(1984) is
lacking in its flexibility since the method requires the generation of a fixed
number of most probable states(MPS’s) to compute the bounds. Therefore, if the
number of MPS’s to be generated is to be changed, then the whole process must
start again from its first step. Lam and Li(1986) proposed more practical algorithm
improving this disadvantage of Li and Silvester(1934)'s method. Lam and Li(1986)
generated the candidate states of MPS, which is stored into data structure, called
heap(Horowitz and Sahni(1976)) and then obtain the current MPS one by one in

1. Department of Computer Application. Hallvm College of Information and Industry.

2. Department of Statistics. Hallvm University.

-463-

decreasing order of state probability. Shier(1988) suggested more efficient
algorithm than Lam and Li’s method in which the MPS’s are enumerated one by
one from a smaller group of candidate states. Those states are generated based on
the algebraic structure of network states. Gomes and Craveirinha(1998) presented
an algorithm in which the MPS's are enumerated from the candidate states stored
in heap using successive order. Methods of Lam and Li(1986), Shier(1988), Gomes
and Craveirinha(1988) apply similar procedure that generates candidate states, and
stores all the states into heap. Then, the states are rearranged in the order of
state probability and then the most probable state having the greatest state
probability i1s chosen from the heap. In this paper, an algorithm is presented for
generating the most probable states in decreasing order of state probability. This
method generates the candidate states in a simpler manner and prior to storing all
the states into heap, a newly generated candidate state is compared with a state
i1 the heap without computing state probability. Only those states which are
acceptable are stored in the heap in the heap. By adapting this procedure, we can
reduce the memory size significantly and the execution time is comparable to the
existing methods for an acceptable level of criterion. In Section 2, we describe our
algorithm for generating most probable states and examine its advantages and
disadvantages by comparing the proposed algorithm with the other ones
numerically using an example. Section 3 compares our method with Gomes et al.'s
method;in terms of memory reduirement and empirical execution time based on
several types of example networks.

Notation
2 state space of network
X=(x1,,x,) a network state where,
1, unit 7 1s operational
x;=
0, unit 7 is fail
rda) probability of x;= 1(0)
qi
R; b
S={7, 1y, , 14 a set of failed unit number such that 7,<{7,<{ --<,
where 1< k<n, 1<:1,<n
S—{:4 a set S with element 1, deleted
S+{7) a set S with element i, added
H a neap

-464-

2. Description of Algorithm

Considering a network having = unreliable units 1,2, ---, n, we make the
following assumptions:

1. each network unit can be in one of two states, operational or failed

2. the units fail independently of each other

In a binary state model, the size of £2 is 2”. A network state is usually
represented as X=(x,*,x,), for exmple, when all the units are operating,
X=(1,1,---,1). However, it may be easier to represent a network state by
designating a set of failed units. Relabeling network unit as R,= R;=-- =R, =0,
we represent each network state by the set S; of failed units. If we let the

probability p(S;) be given by
p(S)=C1Lr) (ILa)

= (T LR,
then we have p(S)2p(S,)=---=p(S,.). Clearly, the most probable state is

S;=¢ and its corresponding probability is given as MS;)) = Ij[‘ pi. The next
most probable state is S,;={1} and #(S;)=q, l:[lp,-. On the other hand, the least

probable state is S,.={1,2,--,7} and p(S,)= Ijxq"' Instead of enumerating all

the network states to evaluate the network reliability or performance, we consider

only = most probable states S;,S,,---S,, which satisfy a certain criteria. For

example, we choose the minimum m satisfying 2 p(S,) = clcoverage) or some
~

other stopping rule. When m most probable states, S;,S,,:--S,,, are identified,

the upper and lower bounds of a given network reliability measure may be
derived by applying the method of Li and Silvester. All the algorithms proposed
by Lam and Li, Shier and Gomes et al. to generate the most probable states store
certain candidate states in a data structure, which is referred to as a
heap(Horowitz and Sahni(1976)). A heap has three major operations: Firstly,
inserting the elements along with its weights, secondly, reordering elements in the
heap by the weight so that the root of heap has alwavs the largest weight and
finally, selecting an element having largest weight from the root of heap. At each
iteration of these algorithms, certain candidate states may be inserted inwo the
heap and after reordering these states by the size of its probability, a state which

-465-

1s most probable state at the current iteration, is selected from the heap. We also
adopt a heap for storing the candidate states.

Algorithm
For a given network unit {1, -, 7},
relabeling units as R;= R;=-- 2R, =0.
1. Initialize: Sy—¢, Sy—{1}, S;{2}, H= ¢, 3
2. Repeat
2.1. generate candidate states from S;
2.1.1. if first element of S; > 1 then generate S;+ {1}
2.1.2. for each element of S; except first, generate S;,— {7} +{7,+1}

2.2. checking comparability for candidate states
2.3. insert accepted candidate states into H
24. select current MPS from root of H

t—i+1, S~ selected state

The process continues until sufficient number of states are selected.

Remark 2.1 In our algorithm, step 2.2 is the procedure that checks comparability
of states by taking the difference of candidate states generated in step 2.1 from
each element of states in heap. Identifying the sign, we can decide to store
candidate states or not. If all the sign is positive, the candidate state is considered

to be comparable state even without computing its probability. When S,;={2,4},
the generated candidate states are {3,4},{1,2,4},{2,5} and if there is a state
{1,2,3} in heap, then for {1,2,4} and {1,2,3}, the differences are, 4-3, 2-2,
1-1, since all the signs are positive, the state {1,2,4} is not accepted and thus is

not inserted into H.

Table 2.1. Comparison of heaps (n=9).

lter. output heap after insertions
state Lam & Li Shier Gomes et al. Qurs
0 ¢ - - - -
{1} 12).01.2) {2) {2).41,2} -
1 {2} {3).{1.2).42.3} {3}.{1.2} {3).41.2) {31.41.2}
2 {3} {40.00.204231{34} {43 1121413} {4}V {1.2} {4}.{1,2}
3 {4 {1.2}, {2 3).{5} {1.2).{1.3}.{1.4} {5}41.2} {51.{1.2}
{3.4}.{4.5) {5}
4 {12} {13).4231.{5).434) {13}41.4%{5} {1.3H5}.{1.23} {1.3H5}
{45}{12,3}
o) {1.3) {23}{14)43).43.4) {23414} 45} {230 4140{3}, 12.3}{14}.15}
{1.2.3}.{11,3.4}.{4.5) {1,2.3}

-466-

Consider a 9 unit network with p=0.8, p,=0.85, »;=0.99, p,=0.9,
ps=10.999, »=0.999, »,=0.95, 24=0.999, p3=0.999 to illustrate the

differences in terms of heap size. Table 2.1 presents the results up to only 5
iterations, although there are more numencal calculations done for the network.
From Table 2.1, Lam and Li generate almost two candidate states at each
iteration, and thus the heap size increases very rapidly as the iterations continue.
At iteration 2. Shier’'s algorithm generate candidate state, {1,3},{4} from state
{3} and all the states remained in heap are {4},{1,2},{1,3}, and {1,2} and
{1,3} are comparable directly without computing probability. Also, in Gomes et
al.’s algorithm generate {2,3} from state, {1,3} at iteration 5. But, this state is
directly comparable to {1,2,3}. These comparable candidate states have
relatively low probabilities, and are stored into the heap at the early iteration. As
seen Table 2.1, our algorithm generates only those candidate states which do not
directly comparable without computing their state probability from step 2.2. From

this aspect of the algorithm, our method can reduce the size of heap throughout
the evaluation process.

3. Numerical Examples
In this section, we compare our method with Gomes et al.'s method with regard
to heap size and empirical execution time. The following results are obtained by

implementing C programming language on a microcomputer

Table 3.1. Comparing the algorithm of example 3.1-1

coverage

m Gomes et al. Ours (%)

50 12 5 99.01
1000 126 27 99.999
3000 214 49 99.99999
5000 234 68 99.999999

Example 3.1 case 1) Consider a network with 15 units(not shown its structure
here), py=0.5. p»=0.6, p3=0.7 and p,=0.99+0.001 - (i —3), i=4,5,---,12,
112=10.9992. p,=0.9993. p;5=0.9994. Table 3.1 dispiays the memory size of
heap for each method when the value of # changes from 50 to 5000. This case
shows that onlv three units have low reliabilities and remaining 12 units are
highlv reliable. The size of state space is 32768, but only 2 small number of
states. say 20. (0.15%6) vield 99.01% coverage. We note that the heap size for
Giomes et al.’s method is about 4 times as large as that needed by our method.

-467-

Table 3.2. Comparing the algorithm of example 3.1-2

coverage
m Gomes et al. Qurs 9)
1000 336 20 74.93
3000 1017 39 92.71
5000 1499 46 96.94

case 2) Consider a network with 15 units, p,=0.555+0.001 - (i—1), i=1,--,7,

p:=0.74+0.05-(:—8), i=8,-,13, »u=0.97. ps=0.99. This case shows
that about 20% of all tlie units have high reliabilities. Table 3.2. shows that the

coverage is quit low with 2= 1000 MPS (3%) and the heap size for Gomes et
al.’s method increases rapidly and it requires about 4 times as big heap size as

ours.
Table 3.3. units, probabilities, weight,
ranks
unit 1 b; q; R;= Qi/pi
1 0.8 0.2 0.25
2 08 015 0.17647
3 093 001 0.0101
4 0.9 0.1 0.11111
5 0939 0.001 0.001
. 6 0.999 0.001 0.001
Flgufe 3.1. Example network 7 095 005 0.05263
8 0999 0.001 0.001
9 0.999 0.001 0.001

Table 3.4. Comparing the algorithm for the network in Figure 3.1(#=9)

m Gomes et al. Ours coverage
heap size time(sec.) heap size time(sec.) (%)

50 9 0.0019164 4 0.0019292 99.967
100 9 0.0020631 5 0.0021013 99.998
150 10 0.0022099 5 0.0022763 99.9998
200 10 0.0023627 5 0.0024644 99.99997
300 11 0.0026994 6 0.0028750 99.999999

Total 11 0.0034678 6 0.0039167 100

Example 2.2 Consider an example network given in Figure 3.1, with its
rcliabilities be given In Table 3.3. Table 3.4 represents the heap size and execution
time(in seconds) for two algorithms. Execution time is obtained by repeating the
simulation 50 times. As seen from Table 3.4. our algorithm reduced heap size
more than 40% and empirical execution time i1s comparable to Gomes et al's

algorithm.

-468-

4. Concluding Remarks

In this paper, we suggested a new algorithm for generating the most probable
states for a given network. From several numerical examples, we showed that our
algorithm significantly reduces the memory size by generating the non-comparable
states only. Regarding the empirical execution time, we also showed that our
algorithm is comparable to the method of Gomes et al.(1988) for a generally
acceptable level of coverage. Our algorithm tends to take longer execution time
as m becomes large, which is due to the checking process for the candidate
states being directly comparable, although the reduced heap size helps to shorten
the heap operation time. Therefore, there is a room to improve our algorithm by
modifying the method of checking candidate states for a more attractive

achievement of execution time when m becomes large.

REFERENCES

[1] V.OK. Li and J.A. Silvester, "Performance analysis networks with unreliable
components”, IEEE Transactions on Communications, vol. COM-32, pp 1105-1110,
1984.

(2] Y.F. Lam and V.O.K. Li, "An improved algorithm for performance analysis of
networks ;with unreliable components”, IEEE Transactions on Communications, vol.
COM-34, pp 496-497, 1986.

[3] D.R. Shier, "A new algorithm for performance Analysis of communication
systems”, IEEE Transactions on Communications, vol. COM-36, pp 516-519, 1988.
[4] E.J. Valvo, D.R.Shier and R.E. Jamison, "Generating the most probable states
of a communication system”, Proc. IEEE INFOCOM ‘87, San Francisco, pp 1i28-
1136, 1987.

[5] TM.S. Gomes and JMF. Craveirinha, "Algorithm for sequential generation of
states in failure-prone communication network”, IEE Proc Commun. vol. 145
pp73-79, 1998

[6] E. Horowitz and S. Sahni, “Fundamentals of data structure”, Pitman, 1976.

]

-469-

