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ABSTRACT

We propose two new blind LMS and MMSE algorithms called projection-based least mean square (PB-LMS)
and projection-based minimum mean square error (PB-MMSE) for smart antennas. Both algorithms employ
the finite constellation property of digital signal to transform the conventional LMS and MMSE algorithms
into blind algorithms. Computer simulations were carried out in the AWGN channel and Rayleigh fading

channel with AWGN in CDMA environment to verify the performance of the two proposed algorithms.
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|. Introduction

Wireless communication is now playing an
important part in supporting various voice and
data services. However, the limitation of
available radio frequency resource poses a
major challenge to these systems. One
promising solution to this problem is to use
smart antennas (or adaptive antennas). Research
on adaptive beamforming algorithms for smart
antennas has been carried out and various
blind as well as non-blind algorithms have
been achieved [1]-[5]. Most conventional
beamforming algorithms are based on prior
knowledge of the array manifold. Therefore,
their performance strongly depends on reliable
knowledge of the manifold. On the other hand,
in many applications such as digital

communications the array manifold is poorly
defined because of a highly variable
propagation environment. In order to overcome
this weakness, training sequences are used.
Nevertheless, this  approach  results in
bandwidth inefficiency. Recently, various blind
algorithms, which exploit the advantage of
signal properties such as constant modulus
(CM) [2], decision-directed (DD) [3-4], or finite
alphabet (FA) [5], have been developed. Blind
methods require no training signals for the
demodulation process. Thus, bandwidth
efficiency can be improved. Moreover, in
cellular applications, blind algorithms can be
used to reject interference from adjacent cells
[5].

In this paper, we propose two new blind
algorithms, called PB-LMS and PB-MMSE that
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are based on the finite alphabet property of
digital signals to simultaneously estimate the
weight vector and the desired signal
Simulation results show that the performance of
these two proposed algorithms is comparable to
that of LMS-CM and  steepest-decent
decision-directed LMS (SD-DD-LMS) algorithms.

Il. Proposed Algorithms
Consider M signals impinging at an array of N

elements. A schematic diagram of the basic
receiver system is illustrated in Fig. 1.

o B e e’ (@)
|comverr| correstor
wi ()

—n [T x,(1)
l_l Down N ot

| converter corel

S

yiry=w' (N0

0]

X, (1
g()w; )

Fig. 1: Schematic diagram of the receiver.

The received signal vector or data vector at the

k" snapshot is represented by:

FCED N CY @R TC R
Where,

2B =1 20(B, 2,(B),, xy1 (D] is
the received signal vector.

s; (k) is the *

7 () is additive
(AWGN) at the array.

—d)( 0)=I[a (01),a(8p),...,an (0]
is the steering vector.
The array output or the desired signal can be

expressed as follows:
- >
y=w x ?
The problem addressed in this paper is to

impinging signal.

white gaussian noise

>
estimate the weight vector w so that the
desired signal can be recoverd, given the

i~
received signal vector x ().

A. LMS algorithm with projection

Let us consider the conventional LMS algorithm
in which the beamforming weights are updated
as follows [6]:

Wkt D) =wk) ~px(k+1e (k+1)
G

p is the step size parameter, which

speed of the

where,

controls the convergence

algorithm. ;(k) is the received signal vector
at the &% snapshot. e(k) is the error between
the desired signal 3(%) and the reference
signal d(k) defined by:

e(k) = d(k) — y(k) @)
In the proposed algorithms, based on the fact

that y(k) is confined in a finite set of
symbols, the use of training or reference signal
is unnecessary. After finding the desired signal
as in equation (4), we can perform as follows:

- Project (k) onto disrete
denoted as Pr[y(A)].
- Calculate the error by

e(k)=Prly(k)]— y(k).

The LMS algorithm with projection (PB-LMS)
can be summarized as follows:

1. Initialize

w(0), k=0

2. Update weight vector, &= k+ 1.
Receive a new snapshot.

B ="w" (k=1)%(k

Project  y(k)
Prly(&)].
e(k) =Pr[y(k)]— y(k)

Wk =w(k—1)—px(Be" (k)

3. Iterative until the weight vector converges.

constellations,

onto discrete constellations,

B. MMSE algorithm with projection

In the MMSE approach, the cost function to be
minimized is [6]:

— —H > 2
Jw)=E[l w z(B—dR|] )
An adaptive solution that minimizes the cost
function can be expressed as [6]:

747(/@+1)=7Iz(k)~—%pv](70) (6)
where

V() =2E%(B % (B1w—2Ex(k) d’]
or VI w)=2Rw—2p %)

R=Ex(k 27 (B] is the

correlation
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matrix  of the received signal

;ZE[}(k)d* (k)] is the cross- correlation
of the received signal vector and the training
sequence. In MMSE algorithm with projection,

vector,

after finding (k) as in equation (2), we
follow the same steps as described in

subsection A to find Pr[y(k)]. The proposed
MMSE algorithm can be expressd as follows:
1. Initialize

w(0), R(0), P(0), k=0.
2.Update the weight vector, &= k+1
Receive a new snapshot

KB ="w" (k—=1Dx (R
Project  y(k)
Priy(A)].
R(B)=fRk—1)+x (k) x" (k)
D= (k—1)+% (B Pr"[%(A)]

VA w(k)=REw(k—1)—p(k
wkh=w(k—1)—pvw(k)
3. Iterative until the weight vector converges.
0< <1, is
called the forgetting factor, and g is also the
step size parameter.

onto discrete constellations,

In this algorithm, parameter f ,

ll. Discussions on the proposed
algorithms

The proposed algorithms are similar to several
other blind algorithms that have been
developed recently such as Multi-target CM
(MT-CM)  algorithm  and  Steepest-Decent
DD(SD-DD) algorithm. In the former and the
latter e(k) are

algorithm, the errors

determined by:

oy YA
(k) =2( () — ) ®

and,
e(k) = y(k) — sgn(Re(y(k))) ©®
respectively.

It can be inferred from equations (8) and (9)
that in order to generate the error signals, the
MT-CM  algorithm use the constant envelop
property of the signal, while the SD-DD
employs the sign of the signal [6]. On the
contrary, the proposed algorithms use the finite
constellation of digital signal to make the error
signals.

An other issue that we would like to comment
here is the difference between the conventional

MMSE  algorithm and
counterpart. In  the

the proposed MMSE
conventional MMSE

R and

-
the cross-correlation p are defined as [3]:

algorithm, the autocorrelation matrix

R= lim gl?c(n) = () 10)
= lim—k 2 () ay

where N is the number of snapshots. In this
case, the calculations of R and 7) depend not
only on the present snapshot, but also on the
past snapshots. The accurate estimates of R
and -j; can be achieved only if N is
sufficiently large. This results in the large
memory to store the snapshots and the expense

of computational load. To overcome these
weaknesses, we apply a factor called forgetting

factor for computing R and Z , as in [7]. The
purpose of this factor is to drive the degree of

the dependence of R and _5
snapshots. The larger the factor f is, the more

on the past

R and -5 depend of the past snapshots and
vice versa.

IV. Computer simulation results

Fig. 2 illustrates the BER performance
corresponding to the SNR in the AWGN
channel and multi-path Rayleigh fading channel
with AWGN.

BER
7
3

1e4 { —@— PLMS with Rayleigh Fading \\
O PMMSE with Rayloigh Fading _
~w~ SD-OD-LMS with Rayleigh Fading N
0 LMS-CM with Reyleigh Fading
1e-5 { —48- PLMS without Rayisigh Fading hal

=~ PMMSE without Reyleigh Fading
~4~ SD-DD-LMS without Rayleigh Fading
—O— LMS-CM without Rayleigh Fading

0 ° 5 4 2 0

SNR
Fig. 2 BER performance versus SNR for
SD-DD-LMS, LMS-CM and the two proposed

algorithms in the AWGN channel and
multi-path  Rayleigh fading channel with
AWGN.

The simulation was carried out in CDMA
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enviroment using BPSK modulation. The
processing gain is 64. The number of users is
10. The number of array elements is 10. In
addition, the velocity of the mobile user is 80
km/h. The number of multi-path is 22. And
the carrier frequency is 900 MHz.

As can be seen from Fig. 2, in the absence of
Rayleigh fading, the BER of the PB-MMSE
algorithm is slightly better than that of the
conventional LMS algorithm using CM and
SD-DD properties with error signals as in (12)
and (13), respectively. The BER of the PB-LMS
algorithm is slightly worse than that of
SD-DD-LMS but better than that of LMS-CM.
However, in the Rayleigh fading channel with
AWCGN, the BER of the four algorithms is
nearly the same.

—@— PLMS with Rayleigh Fading

-0 PMMSE with Ravleigh Fading
%~ SD-DD with Rayleigh Fading
—G- LMS-CM with Rayleigh Fading
—— PLMS without Rayleigh Fading
—O PMMSE without Rayleigh Fading
=&~ 5D-DD without Rayleigh Fading
~O~ LMS-CM without Rayleigh Fading

014

BER

Q ; 4 l:; 8 1'0 12
number of antennas

Fig. 3 BER performance versus number of

antennas for SD-DD-LMS, LMS-CM and the

two proposed algorithms in the AWGN channel

and multi-path Rayleigh fading channel with

AWCN.

Fig. 3 shows the dependence of BER on the
number of array elements. The conditions for
this simulation is almost the same as those
used in Fig2, except that the number of
antennas is changed at SNR of -4 dB. As
shown in Fig. 3, in both AWGN channel and
multi-path  Rayleigh fading channel, BER
performance fo the four illustrated algorithms is
almost the same. Nonetheless,of the four
algorithms, PB-MMSE still prove to have the
best BER performance.

V. Conclusions
In this paper, we propose two new blind LMS

and MMSE algorithms for smart antennas. Both
of the approaches have the BER performance

comparable to that of SD-DD-LMS and
LMS-CM algorithms. Moreover, because of
applying the finite constellation property of

digital signal, the two proposed algorithms are
applicable not only for BPSK, but for other
modulation techniques such as QPSK and QAM
as well. Besides, the PB-LMS and PB-MMSE
algorithms are not complex compared with
SD-DD-LMS and LMS-CM algorithms. Thus the
two proposed algorithms are good choices for
real time smart antenna applications.
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