P-39 ## L-ASCORBIC ACID AND ARSENIC TRIOXIDE SYNERGISTICALLY REPRESS CONSTITUTIVE ACTIVATION OF NF- κ B AND COX-2 EXPRESSION IN HUMAN ACUTE PROMYELOCYTIC LEUKEMIA, HL-60 Seong-Su Han¹, Sook J. Lee¹, Seung-Tae Chung², Juno H. Eom², Young-Joon Surh³, Hye K. Park¹, Mary H. Park¹, Won S. Kim¹, Kihyun Kim¹, Chulwon Chung¹, Mark H. Lee¹, Keunchil Park¹, Jhin-Gook Kim¹, Jung-Hyun Yang¹, Sung-S Yoon^{1,4}, Neil H. Riordan⁵, Hugh D. Riordan⁶, Bruce F. Kimler⁷, and Chan H. Park^{1,5,6} ¹Samsung Medical Center, and Sungkyunkwan University School of Medicine, Seoul 135-710, Korea; ²Department of Immunotoxicology, Korea Food and Drug Administration, Seoul 122-020, Korea; ³College of Pharmacy, Seoul National University, Seoul 151-742, Korea; ⁴Seoul National University College of Medicine, Seoul 110-799, Korea; ⁵Aidan Incorporated, Tempe, AZ 85281, U.S.A.; ⁶The Center for Improvement of Human Functioning International, Wichita, KS 67219, USA; 7University of Kansas Medical Center, Kansas City, KS 66160, USA. Eukaryotic nuclear transcription factor, NF-B and cyclooxygenase-2 (COX-2) has been implicated in pathogenesis of many human diseases including tumor and are known to be activated by various external stimuli. Recently, increasing evidences have supported that L-ascorbic acid (LAA) is selectively toxic to some types of tumors at pharmacological concentrations as a prooxidant, rather than antioxidant. However, the molecular mechanisms by which LAA initiates cellular signaling toward cell death are still unclear. Therefore, the effects of LAA on eukaryotic transcripton factor NF- κ B and COX-2 expression were investigated. In the present study, LAA suppressed DNA binding activity of NF- κ B composed of p65/p50 heterodimer through inhibition of degradation of IB- α and preventing nuclear translocation of p65 subsequently, but not direct-interruption of DNA binding of NF- κ B to their consensus sequences. Inhibitory effect of LAA on NF- κ B DNA activity was dependent upon GSH level in HL-60 cells as well as H₂O₂ generation but not superoxide anion. LAA also downregulated the expression of COX-2 which has NF-B binding site on its promoter through ## October 17 (19) repressing the NF- κ B DNA binding activity. Moreover, cotreatment of 1 μ M As₂O₃ with various concentrations of LAA enhanced LAA induced-repression of NF-B activity and COX-2 expression. In conclusion, it is likely that LAA exerts its anti-tumor promotional effect through downregulation of NF- κ B activity and COX-2 expression. Cotreatment of 1 μ M As₂O₃ can synergistically enhance inhibitory effect of LAA supressing NF- κ B activity and COX-2 expression