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Abstract

In this paper we study a new convergence behavior of the least
mean fourth (LMF) algorithm where the error raised to the power
of four is minimized for a multiple sinusoidal input and Gaussian
measurement noise. Here we newly obtain the convergence
equation for the sum of the mean of the squared weight errors,
which indicates that the transient behavior can differ depending
on the relative sizes of the Gaussian noise and the convergence
constant. It should be noted that no similar results can be expected
from the previous analysis by Walach and Widrow!"!.

I. Introduction

The Least Mean Square(LMS) adaptive algorithm have been
successfully utilized for a variety of applications including system
identification>*¥, noise cancellation™®, echo cancellation”),
channel equalization® during the last two decades. Meanwhile,
the adaptive filtering algorithms that are based on high order error
power conditions have been proposed and their performances have
been investigated!"'®'"'>"] Despite the potential advantages,
these algorithms are less popular than the conventional LMS
algorithm in practice. This seems partly because the analysis of
the high order error based algorithms is much more difficult, and
thus not much still has been known about the algorithms.

The least mean fourth (LMF) adaptive algorithm'"! in which the
error raised to the power of four is minimized. Here, one has to
consider the possibility of the convergence to local minimum.
However, the mean of the error to the power of four is a convex
function of the weight vector and therefore can not have local
minima. Indeed the Hessian matrix of the error to the four power
function can be shown to be positive define or positive
semidefinite!'*).

Walach and Widrow studied the convergence of the least mean
fourth (LMF) adaptive algorithm!"), However, in their convergence
study of the mean squared weight errors, the statistical moments
of the weight errors with the orders greater than two were
neglected and the transient behavior was not analyzed. In this
paper, we present a new result on the convergence of the least
mean fourth algorithm under the system identification model with
the multiple sinuscidal input and Gaussian measurement noise.

Following the introduction, we give a brief description of the
underlying system model in Section I The results of the
convergence analysis and the simulation are presented in Sections
Iif and IV, respectively. Finally we make a conclusion in Section

11. System Model

We consider an adaptive noise cancellation problem for the
multiple sinusoidal input and Gaussian measurement noise. In that
case, both the unknown system and corresponding adaptive filter
can be described by the multiple in-phase(/) and quadrathre(Q)
weights as shown in Figure 1%,
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Figure 1. Adaptive digital filter for a muitiple sinusoidal input
under study.

For the m-th sinusoidal noise, the adaptive canceller structure

also becomes to have two weights win(n) and wg.m(n), with I and
Q inputs, x,,(n) and xg,,(n), respectively. Thus the output of

the m-th controller, y(n) is expressed as

yim = i{w, ()X (n)+ Wy (n)xg 0 (n)} 8}

m=}
where
x; n(n) = A, cos(@,n+0,) A4, cos'¥, (),

xQJ,,(n) = A, sin(w,n+9,) AA, sin ¥, (n),

m:branchindex=1,2,3, .., M,
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Xgm(n)= A4, si(w, n+8,) A4, sin¥, (n),

m:branchindex=1,2,3,..,M,
n : discrete time index,
A : amplitude,
: normalized frequency,
: random phase.

Also, referring to the notation in Figure. 1, the error signal e(n)
is represented by

el = $4d.(0) - . () + )

= —i A{w, (m) —-w,__' yeos'¥, (n) +{w,, (n) ~ w, '_' }sin'P, ()]
+17(n) @

where g(n) is zero-mean measurement noise.

It can be shown from (1) and (2) that minimizing the fourth
power error and using a gradient-descent method® yields a pair
of the LMF weight update equations for each m as

w (n + l)= w (n)+ 2yme’(n)xm (n),

and Wom (n+1)= L (n)+ Zyme’ (n)xq‘m n) o)

where g, is a convergence constant.

In the following, we analyze the convergence behavior of the
summed variance of weight errors of the LMF algorithm using a
new analysis method.

ITI1. Convergence Analysis

To see how the adaptive algorithm derived in (3) converges,
we first investigate the convergence of the expected values of the
adaptive weights. To simplify the convergence equation, we may
introduce two weight errors as

Via(n) A W (n)-w,

and Vom(m) & Wo, (1)~ Wo,, @
Inserting (4) into (3), we have

v, (n+1)= v, (m)+ 2,ume’ (mx,(m)

and Yom (n+1)= MOR 2,ume3(n)xmn n). ®)

Next we investigate the convergence of the mean- square
error(MSE), E[ez(n)] Using (2) and (4), we can express the
MSE as

Elet(m)] = ZMj el(n)+ o

n=

S At ()4 o

m=1

L ©
2

where

Sm (n)A.E[vf'm (n)]+ E["é.m (n)] B

o‘,”' A.E[qz(n)]

From (6), we find that studying the convergence of MSE is
directly related to studying the sumof &,.(n).

Inserting (1) and (2) into (5), and assuming that input signal
x,(n)  measurement noise n(n),and  weight errors

Vi m(1) , Vo (n) are independent of each other, we take the
statistical average of both sides to obtain two equations for
E[v,’(n+1)] s E[vé(nﬂ)]. Since there two equations are

symmetrical, we  add them  and assume that

li‘[v,z,,I n+ l)] = E[vé‘m(n + 1)] . Thus, eliminating the
subscripts / and @ to simplify the second moment equation
of weight error and rearranging the terms yields .

Elvi(n+1)]= jﬂ.’. AL{E[VZ(m)] + 3E[V. (m)E[V. (m)]}

- ALE )+ B D))
+ % U2 ALET ONEDL (] + (B D)

+{1=6ps_ AE[n" (m)]+ 30l ALE[n* (W] ETV. ()]
+2u ALE[n" (). 1)

Assuming that n(n) is a Gaussian with zero average and
Wy m(B), Won(n)are Gaussian variables, v,(n)is also a

Gaussian variable. Thus, (7) can be simplified by expressing
E[v:“(n)] as E[v;(n)]. Although 7(n), E[v,,(n)] decreases

very rapidly, it is no zero from the beginning. Thus, a Gaussian
random variable Aw, (n) with zero average, and its variance

are adapted as follows:

AW, (n)Av,,(n) = V,,(n),

and V(] =Vim+ plim) @®)

where V.(n) AE[V,,,(n)]

Pa(n) & E[atw, )]

From (8), we find that during the transient state, i.e. from
beginning to the moment just before the steady state, p,’,,(n) is

much smaller than V,,f(n) and E[v,,,(n)] and be regarded as
¥2(n). On the other hand, p2(n) becomes dominant over
VX(n) in the steady state and E[v,,,(n)} can be regarded as
Pa(n).
Now, we apply (8) to (7) and use the relationship between
E[v,f,'( (n)] and E[v,f,(n)] of the Gaussian random variable!'*! to

arrive at the following equation.
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Vi(n+ D)+ pi(n+1)

= SULAL S (1) + 92 (W, (M) + 18 (MW 2 () + 605 (m)}
— GBu, AL - 452450 A () + 402 (V2 () + 201 (m)
+(1-6p, 4207 + p2 A2 (m) + P (m)}
+30pu%Akay ©)]

The convergence equation (9) may be examined for two
different cases, First, p2*(n) and the last term of (9) can be
removed for the transient state.

It is noted from the right-hand side of (10) that in extreme
cases, only one of the two terms V2(n) or ¥2(n) for which

those two terms are the same and is given by

yo 1-6u L2 + o, (10)

In (9), the first term  ¥°(n) acts as the dominant term when
V2(n) is greater than V2, If VE(n) V2(n) is smaller than
V2, then the last term becomes dominant. Figure 2 is given to
illustrate in terms of the convergence constant g, and the
variance of measurement noise a,’;, which of the two terms, the
first term  ¥S(n) and the last term  ¥2(n), is dominant when

Vi,,, =0.8. Point (a) is a region in which the term VS(n)
dominates over the other and point (b) is when ¥2(n) term is

the dominant one. Therefore, the transient convergence equation
(9) can be written as ;
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Figure 2. Dominant term decision diagram for the LMF
algorithm of the summed variance of weight errors at
the transient-state.

[ point(a): g4, = 03 and g, =0.1.

point(d): 4, = 02 and o} =05.]
In the steady state, V2(n) becomes sufficiently small and the

terms that include p%(n) and pS(n) can be ignored in the
convergence equation (9). The equation is then simplified as

P+ D64 A07 +9UL 4520 ()
+304: 40 (12)

Therefore, from (11) and (12), we can get convergence
condition, time constant, an steady stare value.

1V. Computer simulations

In this section, we present the results obtained from computer
simulation along with the theoretical analysis of LMF aigorithm
in the previous section.

case 1. The convergence property of LMF algorithm.

case 2. The performance comparison of LMF and LMS. .

We set the frequencies of the first and second sinusoidal signal
at 120Hz and 240Hz, respectively, and selected 2KHz for
sampling frequency. The input signal x(n) and desired signal

d(n) are given by

x(n)= ZI: A, cos(@ n+¢,)

=l

= ‘/;{cos(lgm +4)+ cos(Amm +9, )},

2000 2000
dmy =Y W5, + Wy %o}

=0.6x,,(n) - 0.1x, (n) + 0.3x, ,(n) - 0.3x,,(n) (13)

The simulation was carried out by setting 0.001 and 1 as the
variances of measurement noise a'f,. And the initial value of
weights is zero. The simulation results were obtained by
ensemble averaging 1000 independent runs.
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Figure 3. Leaming curves for the LMF algorithm of the summed
variance of weight errors when the convergence
behaviors are divided between ¥*(n) and p’(n).
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Figure 3 showed the summed variance convergence curves of
weight error for the LMF algorithm that resulted from the
simulation when Hygney = 02 o} = 0.001. We see that

¥(n) is the dominant term during the transient state whereas
p*(n) becomes dominant during the steady state.

We have compared the convergence behavior of LMF
algorithm and that of algorithm LMS through simulation.

In Figure 4, the convergence behavior curves of summed
variance of weight error aobtained from simulation are compared
with each other. It has been newly found that for some region of
M and azq , resulting in sufficiently small ¥}(n) values
compared to unity, the initial convert- gence of the LMF
algorithm is much faster than the conventional LMS algorithm.
Later on, the LMF convergence looks similar to the LMS case.
This fact has not been reported yet mainly because the higher
order moments have not been included in the previous analysis of
the LMF transient behavior'l. On the other hand, when V72, is

large, the LMF algorithm converges geometrically at a rate a bit
slower than the LMS case.
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Figure4. Comparison of the LMF and LMS algorithm
learning curves of the summed variance of weight
errors;

@) gy, 0002 =02, ¢3=0.001

» Hmr)
and V¥ }=0.558,

- - 2 _
(b) tu(LMS)_O'OOZ’ H mry =0.0002, oy, =1
and y2 =558

V. Conclusions

We present a new result on the convergence of the least mean
fourth(LMF) algorithm under the system identification model
with the multiple sinusoidal input and Gaussian measurement
noise. The analytical result on the mean square convergence
shows that depending on the power of Gaussian noise and the size
of convergence factor. Accordingly, the transient behavior can be

characterized by one of the two cases: (1) initially, the LMF
algorithm converges much faster than the LMS, but soon after
that, it converges almost linearly on logarithmic scale like the
LMS algorithm; (2) the LMF algorithm converges linearly and at
a slower rate than the LMS. To sum up, different convergence
behavior was observed depending on the variance of Gaussian
measurement noise and the magnitude of convergence constant.
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