Wavelet-Based Noise Estimation in Image

웨이브릿에 기반한 영상의 잡음추정

  • Published : 2001.09.01

Abstract

The paper presents an algorithm for estimating the variance of additive zero mean Gaussian noise in an image. The algorithm uses the wavelet transform which is a good tool for energy compaction. The algorithm consists of three steps. At first, high frequency components, wavelet coefficients in HH band, are generated from a noisy image by the wavelet transform. In a second step, high frequency components which are out of the noise range ate eliminated. Finally, if the image has many components eliminated in the previous step, then its noise estimated value is reduced. Experimental results show that the wavelet filter has better performance than the other high pass filters such as a Laplacian filter, residual from a median filter, residual from a mean filter, and a difference operator. In various images, the algorithm reduces 50% of estimated error on an average.

Keywords