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Abstract

We propose an algorithm for extracting the boundary of an
object. In order to take full advantage of global shape, our
approach uses global shape parameters derived from Point
Distribution Model (PDM). Unlike PDM, the proposed method
models global shape using curvature as well as edge. The
objective function of applying the shape model is formulated
using Bayesian rule. We can extract the boundaries of an object
by evaluating iteratively the solution maximizing the objective
function. Experimental results show that the proposed method
can reduce computation cost than the PDM and it is robust to
ncise, pose variation, and some occlusion.

1. Introduction

In this paper, we try to solve the problem of extracting the
boundary of an object. Because the shape described by the
boundary is a powerful property, it is one of the most
significant problems in image processing, computer vision, and
pattern recognition. Up to the present, two methodologies,
model-free and model-based, have been proposed in
segmentation approach [1]. Where the model is the technique
representing a shape of an object with some parameters.
Model-free  algorithms [2]{3] based on clustering,
morphological filtering [4], and a watershed method [5], use
local properties such as gray level, texture, and color. These
local features can be useful, but these features are not as
expressive as global shape and are more sensitive to noise and
occlusion by other objects. The model-based methods can
generally find more accurate boundary of an object than model-
free methods but request more computation cost. Kass et al. [6}
introduced deformable contours to model complex shape. With
appropriately designing the energy function, their work
performs well even if the boundary is deformed a little. Wang
and Staib [7] used a point distribution model (PDM) [8]
derived by the principal component analysis and employed the
statistical shape distribution acquired from training sets. In case
that enough training images describing the shape of an object
are given, this method is relatively robust to noise and

initialization of the parameters than other model-based methods.

In order to take full advantage of shape, our approach uses
global shape information based on the point distribution model.

The proposed method models global shape using curvature
as well as edge of training images and it formulates objective
function to find unknown parameters representing boundaries
of an object. The objective function is derived analytically

using Bayesian rule. Our method can extract more accurate
boundary and request less computation cost than PDM does,
since it can represents more detailed shape and it finds the true
position of high curvature points rapidly.

II. Statistical Edge and Curvature Model

In order to employ global shape statistics obtained from
training images, we have to model the shape with parameters.
The edge and the curvature of the boundaries derived from
training images are parameterized using the point distribution
model and the proposed statistical curvature model respectively.

1. Point distribution model

The point distribution model (PDM) [8] is useful for
describing shape, but a complex rigid model cannot be easily
described. The PDM represents each shape of training images
as shown in Fig. 1(a). For setting labeled points, we extract
critical points that have high curvature on the boundary.
Equally spaced points are interpolated between the critical
points. Given M aligned training shapes as Fig. 1(b), each of
these is described by a position vector. The position vector is
L=[x(1), yA1), X42), Yd2)s.... x{N)s yM)]T (i=1,....,M), where
N is the number of total labeled point in a training image. We
calculate the mean shape, L , and the covariance about the
mean. According to the principal component analysis, any
shape in the training set can be approximated using the mean
shape and a weighted sum of deviations obtained from the
eigenvectors of covariance matrix:

L=0L+0b, M
where 0=(q,lq,|...|q,) is the matrix of the first ¢ eigenvectors,
and b=(b,,b.....b))" is a vector of weights which indicate how
much variation is exhibited with respect to each of the
eigenvectors. This equation allows us to generate plausible
shapes that are not part of the training set.
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Fig. 1. Synthetic shape model by PDM (a) synthetic image
(128x128) with its 30 labeled points of the boundary, white
dots are labeled points and bigger dots are critical labeled
points (b) 12 examples of synthetic shapes from a training set
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2. Statistical curvature model

Using the same hand-labeled points of the PDM as Fig. 1(b),
the statistical curvature model describes the curvature of the
shape. Observing edge and curvature with respect to the same
deformed template, which is the local contour described by b,
our method avoids the redundant computation and leads the
faster convergence for optimizing the parameter, b. In the
proposed approach, we define the curvature vector as R=[ #;
(1), 7A2),..., r N (i=1, 2,..., M) (5). Where ri{j) is curvature
value of the jth labeled point in the ith training image. The
mean curvature, 7 (j), and the standard deviation, o,{j), of the
Jjth labeled point, (/=1,2,...,N), obtained from training images.
Then the mean curvature vector is §=[F(l), F(2),...,F(N)]-
Given these statistics of curvature, we model a curvature image
of a training set with noise-corrupted version:

R=R,_ -Liop T @

A curvature image, R, is modeled with one of curvature
templates, Ry, obtained from the boundary represented by
L+ Qb and additive and independent noise, n. Therefore a
plausible curvature image that is not part of the training set can
be generated applying a curvature operator to a corresponding
boundary and adding the noise. For using prior knowledge
derived from training images, the noise is characterized with
the standard deviation of curvature of training set.

IT1. Bayesian Objective Function

In order to apply the shape model and curvature statistics to
the problem of boundary finding, we derive objective function
that is measure of fitting a deformed template, so called a
deformed contour in other approaches, to true boundary of an
object.

1. Edge-based objective function

Given the point distribution model and pose parameter —
scale (s), rotation (6), and translation (7, 7,), the combined
parameter is represented by p=(s,8,7,7,.,b,b,,...,b,). The point
representation of the nth boundary points (n=0, 1,..., N-1) is

x(p,n) = scos 9[’?,. + Zmeﬁ}- ssin 5[2. + ZQW,J’:(}' T.. (3)
[ ]

1 1
y(p,n)=ssin 5[3,. + ZQZnJ(bk:I +5¢08 0[1: + ZQZml.kbk} +1,
=] k=]

We assume that a prior follows a multivariate Gaussian
density as in [1]. Then a prior probability density of the
boundary described by p is expressed as

(pi~m,)*

Pr(p) = HPr<p,) H—J‘_ﬂe W, @

i=1 O,

i

where p; is the ith component of p, m; is the mean of p;, and o
is the variance. For the pose parameters, the variance can be
calculated from the training set alignment.

The maximization problem of the a posteriori probability with
respect to the parameters p, p =(s, 6, T, T}, b, b,..., b)), be
simplified to maximize [7]

i+4

Mo (p) = Z[ (p.- J %2 E(x(p,n). y(p,m))*
=] n=l

where m; is the mean of pj, first term is a prior probability and
second term is likelihood probability. The likelihood uses only
the edge image, E, of an input image which is calculated by the
Canny edge detector [9].

2. Curvature-based objective function

The goal of the curvature-based objective function is to find
the most probable object considering an input curvature image.
In terms of probabilities, we have to decide that curvature
image (R},) of which template described by a particular value of
the parameter vector p corresponds the true curvature image R.
It need to evaluate the probability of the curvature template
given the image Pr(RpR), and find the maximum over p. This
can be expressed using Bayes rule as
ax Pr(R| R',)Pr(Rp)’ (6)

Pr(R)

where Ry, is the maximum a posteriori solution, Pr(Rp) is a
prior probability density of the template curvature Rp, and
Pr(R|Rp) is the conditional probability, or likelihood, of the
curvature image given the template.
The curvature image of deformed template described by the
parameter p, Rp, is directly obtained from the template
boundary using curvature operator such as curvature scale
space (CSS) [10]. Therefore, there is no unknown variable
except p in R,. Pr(R,), that can bias the boundary finder to
search for a particular range of shape and pose, is equal to Pr(p).

As the statistical curvature model in the chapter II, the
curvature image R is represented a noise corrupted version of
R, with noise that is independent and additive: R= Rp+n, then
Pr(RIRp) is equivalent to Pr(R= Rp+n) or Pr(n=R-Rp). The
noise at each pixel n(x,y) equals R(x,y)-Ry(x,y) and is governed
by the probability density Pr(n). Assuming these events are
independent for each point and Pr(n) follows Gaussian with
zero mean and standard deviation o, the likelihood is

Pr(R’Rp)=l:[Pr(n(x,y))

‘H 27rcr

Pr(R,,. | R) = max Pr(R, | R) =

O
(R(x,y)—mx,y))

2
20,

where 4 is a entire area of an image. Because the curvature

" template has support only along the boundary described by p, it

is not necessary to sum over the entire image area. By taking
the logarithm and making the curvature value in a template (Rp)
be the corresponding curvature mean ¥ of curvature model
along the boundary and zero everywhere else. And we
substitute the variation of the noise with the variation of the
curvature model. By eliminating constant terms, we get the

simple likelihood as

20, [Z (R -Rw) )

1
Pr(R|Rn)=;ln N

+Z(R(x,y) R,(x,y) ]
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where A4p is the contour defined by the boundary (x(p,n).y(p,n)),
(n=1,2,...,N), in a template Rp. R(x,y) and Rp(x,y) are curvature
values of a pixel (x). Since Rp(x,y) is the curvature image
obtained from the deformed template describe by p, we make
the curvature value of 4p in a template (Rp) be the
corresponding curvature mean 7 of curvature model along the
boundary and zero everywhere else. And we substitute the
variation of the noise with the variation of the curvature model.
By eliminating constant terms, we get the simple likelihood as

N - Y= 2

PT(R | Rp) = _Z (R(X(p,j), )’(Zp,])) r (])) R (9)
J=1 20—; (J)

We can expand a posteriori function for curvature images

with the assumption of independent Gaussian noise at each
pixel as

207())

Now, considering both edge and curvature, we define a
posterior probability given input image that has edge image E
and curvature image R. Assuming the events about edge and
curvature are independent each other, a posterior probability
follows

Pr(t,, R, |input image) = Pr(¢, | E)-Pr(R, | R) (1)

By the logarithm, the combined Bayesian objective function
with respect to parameter p is derived as

M, (p)= 2%{—M—}+ (12)

2
j=t 20 ]

SR (R(x(p,n), y(p.m)-T,)’
;{EE(x(p,n),y(p,n»— 0 }

The first term expressed by the logarithm of a prior
probability and eliminating constant term is a double of Pr(p)
because Pr(Rp) is equal to the Pr(p). The combined object
function implies that the true boundary is the deformed
template that satisfies the three properties. Firstly, the template
described by p is similar to the boundary reconstructed with
PDM. Secondly, the pixels representing the template have high
edge magnitude. Thirdly, the curvature of template follows the
statistic value acquired from training images using the
curvature model

IV. Experimental Result

For implementation our algorithm, The steepest decent
methods [8] for optimization of M,,,(p) is used. And we used
the average errors as evaluation criteria for showing the
performance of the proposed method. The boundary error of
each labeled point on the deformed boundary template is
calculated by finding the distance to the closest point on the
true boundary.

The image (128x128) shown in Fig. 2(a) is a synthetic image
where the target object is not a part of training set and is rotated
and is occluded partially by other object. The initial deformed
template represented by small white rectangles in Fig. 2(a) was
defined by the mean of the training set. Since our method and

the PDM use the same deformed boundary template described
by p and the number of high curvature points considered are
generally less than one of edge points, the computation cost of
the two method is approximately equal in one iteration time.
But the required iteration numbers for finding the accurate
boundary were decreased by the proposed method as shown Fig.
2(d). The main cause of this result was that the labeled points
having high curvature could find the true corresponding points
rapidly avoiding fluctuation in edges of the corner region that
occurred in applying only PDM. The final result of our method,
Fig. 2(b), shows the insensitivity to rotation of an object and
occlusion by other object. But the snake [6] could not extract
the precise boundary of the object as Fig. 2(c). In this
comparison, we can prove the effect of global shape
information derived from training set. In Fig. 3, we
experimented the robustness to noise by adding different
amounts (from 1000 to 4000) of zero mean Gaussian noise to
the synthetic images. The initial labeled points is defined by the
mean boundary of training set. Applied low-quality real image
like Infrared images, Fig. 4 is experimental results of the
proposed method. This figure shows that our work gives quite
good final contours although the input image has low-quality
and the luminance of the object is similar to one of background.

Fig. 5 illustrates the experimental results of conventional
methods. Fig. 5(a) is the result of watershed algorithm [5], Fig.
5(b) is the result of region growing algorithra [2]{3]. These
results show that the model-free methods are not adequate to
finding a boundary of an object in low-quality images. Given
the left image Fig. 4(a) as input, the final contour of active
contour algorithm [6] is Fig. 5(c). Where the weights of
curvature term and edge term were 1.0 and 0.8 respectively. In
case that a boundary of an object is indistinct or the strong edge
that is not part of the boundary exists near, the model-based
method using only the constraints of contour such as continuity,
bending energy, and smoothness, is difficult to get accurate
boundary.

V. Conclusion

Given a training set that describes a desired object, we solve
the problem of extracting the boundary of the object. The
proposed method models curvature with statistical curvature
model and formulates the curvature-based objective function
that is derived using a maximum a posteriori criterion in
Bayesian rule. The optimum solution of the combined objective
function fits the deformed contour to the true boundary of an
object. In the experimental results, we showed the robustness to
noise, occlusion, and rotation. Comparing conventional PDM,
it could decrease the computation cost. This work performs
well in extracting a boundary of the object of which structure is
a rigid body or is composed of pieces of rigid bodies. When the
initial parameters are too far away from the true boundary, the
optimization may be trapped by local minima corresponding to
nearby edges. So the research about the robustness to the effect
of initialization is needed further.
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Fig. 2. Iteration number for convergence experiment (a) initial
labeled points and input image (b) final result by the proposed
method (c) final result of snake (d) mean error measure with
respect to iteration numbers of the conventional PDM and the
proposed algorithm
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Fig. 3. Sensitivity to noise experiment (a) added Gaussian of
that the variance is 1000, the input image and initial labeled
points, Canny edge image, final boundary. (b) the variance is
2000, Canny edge image and final boundary. (c) the variance is
4000, Canny edge image and final boundary. (d) average error
and maximum error with respect to each Gaussian noise

Fig. 4. Infrared image experiment. input image(ieft) and the
result of extraction the object using the proposed method(right)

(b)
Fig. 5. Boundary extraction result using previous conventional
method (a) result of watershed algorithm (b) result of region
growing algorithm (c) result of active contour algorithm where
weight of curvature term = 1.0, weight of edge term = 0.8
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