20014Fp H140 EREBAFRMAE HXE B14% 1R

=

A,
ryEgAdista H4F

s
g

A4 Az £39E % -ff A} Q) Joint
Maximum Likelihood &3g)

L=
=1

#%3}

A Sequential Joint Maximum Likelihood
Algorithm for Blind Co-Channel Signal
Separation

Inseon Jang and Seungjin Choi
Department of Computer Science & Engineering
Pohang University of Science and Technology, Korea

jinsn@postech.ac.kr
seungjin@postech.ac.kr

abstract

In this paper we consider a problem of blind
co-channel signal separation, the goal of which is to
estimate multiple co-channel digitally modulated
signals using an antenna array. We employ the joint

maximum likelihood estimation and present a
sequential algorithm, which is referred to as
sequential  joint maximum  likelihood (SJML)

algorithm. It separates multiple co-channel signal
on-line and converges fast in overdetermined noisy
communication environment. And the computational
complexity of SJML for M-QAM (M=8, 16, 64,---)
signals is less expensive compared to the SLSP.
Useful behavior of this algorithm are confirmed by
simulations.

1. Introduction

Mobile communications are growing rapidly in the
number of subscribers and in the range of services,
but available radio frequency spectrum is limited. A
promising solution to increase spectrum efficiency
lies in exploiting spatial diversity (via antenna
arrays). Array processing techniques allows multiple
co—channel users per cell in order to increase the
capacity.

Blind co-channel signal separation aims at
estimating multiple co-channel digitally modulated
signals, given only observation vector (measured at
an antenna array) which consists of a superposition
of signal waveforms plus additive noise. Several
methods have been developed so far, among which,
we pay attention to joint maximum likelihood
estimation (11, It seems that this algorithm is more

of blind co-channel signal separation than
conventional gradient based ICA algorithms [4, 5, 6]
which did not take the effect of additive noise into
account. We apply the sequential least squares
method to this algorithm. Then resulting algorithm is
referred to as SJML (Sequential Joint Maximum
Likelihood). This algorithm converge to a solution
much faster to the gradient-based ICA algorithms
and shows better performance in the presence of
additive white Gaussian noise. Moreover the
computational complexity of SJML for M-QAM
(M=8, 16, 64,:--) signals is less expensive compared
to the SLSP [2, 3).

2. Problem Formulation

Consider ¢ narrowband signals entered at an array
of m sensors with arbitrary characteristics. There
are muitiple reflected and diffracted paths from the
source to the array in a wireless environment or
channel. So they arrive at array sensors for different
angles, and with different attenuations and time
delays. Output of antenna array becomes

) = 2 Ba00) pe aw st=ed+od, O

where a(8,) is the array response vector to a signal
from direction 8, by is the amplitude of the k-th
signal, s -) is the #k-th signal waveform which
can be written as

s = 3% bCmalt—nT), @
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where N is the number of symbols in a data batch,
{8:,( +)} is the symbol sequence of the k-th user,
T is the symbol period. And g(-) is the
unit-energy signal waveform of duration T.

And g¢; is number of subpaths for the k-th signal,
ay and ry are the attenuation and time delay
corresponding to /-th subpath, o-) is white
complex symmetric Gaussian noise.

The antenna array output modeled as phase-shifts
under the narrowband assumption. And assume that
the signals are symbol-synchronous, we perform
matched filtering over each symbol period 7. We
obtain the following equivalent discrete representation
of the data

x(n) = glm a;, b(n)+v(n). 3)

where a, is the total array response vector

D .
a, = gqu e a8y (4)

and w, is the carrier frequency.
In matrix form,
x(n) = As(n)+ v(n). (5)

The problem addressed in this paper is the
estimation of s(#), given x(#), and a good estimate
of A, where source  signal s(n) is
s(n) =[6(n) ~ bLm17, x(n) is the matched
filter output for array output, array response A is a
matrix which dimension is mxd and v(#n) is white
Gaussian noise.

3. Sequential LS with Projection

We assume that the noise v(# is isotropic Gaussian
with zero mean and variance o. Then the
log-likelihood function of matched filter output is
given as

log L(A, s(1), - , s(N)
oc—const—leogoz—# gllix(n)—As(n)Hz,(ﬁ)

where |-l denotes the Frobenius norm. We
maximize log-likelihood function with respect to the
unknown A and s(m), n =1,-,N. We consider
the exponentially weighted LS cost function

KAG) = 28" 2= Al s@DI® @

where s(n) belong to a certain alphabet depending
on its constellation. The minimization of (6) is
minimize for (8) leads to

S(n) = a' x(n), 8
2(n) = proj(s(n),

- (n)

A" = C.(m T 2w, ©)

where

T (m = 213("_’)x(z') 27()

=g ’(\:u(n—l)+ x(m)z T (n), @10)
T (n = 2l:5’(”—')2(z) 27(3)

=8 /&u(n—l)+ z(n) z (), Q1)

and the superscript t denotes the pseudo-inverse
and proj( -) means the projection onto its nearest
alphabet. The sequential LS is applied to derive the
SLSP [2, 3] that is summarized in Table 1.

(m = A" x(n)

2(n) = proj ( 's(n))

h(n) = P(n—1) z(n)

g(n) = h(n)/[B+ 2(n)" k(n)]

P(n) =—}, Tri[ P(n—1)— g(n) k" (n)]

e(n) = x(n)— A(n—1) z(n)
An) = An—-D+ e(n) g7 (n)

Table 1. Algorithm outline for SLSP. The
operator Tri( - ) indicates that only the upper
(or lower) triangular part is calculated and its
transposed version is copied to the another
lower (or upper) triangular part.

Note that Pajunen and Karhunen (8] proposed a
similar LS algorithm to our SLSP. Their algorithm is
a nonlinear version of PAST [7], so it is referred to
as the nonlinear PAST. The difference between the
SLSP and the nonlinear PAST is that the former
exploits the generative model, whereas the latter
does the recognition model. As will be demonstrated
in simulations, the SLSP is better in the presence of
white Gaussian noise. The benefit of learning the
generative model was also emphasized in [9].

4. Sequential Joint Maximum Likelihood

For the case of noise-free data, the estimate of s is
~ —t
obtained by a linear transform, s(n) = A x(n),
given the estimate of A. It was pointed out in [1]
that the reconstruction of original sources requires a
nonlinear transform in the presence of noise.

As in 1], we assume that all sources have
identical distributions and the noise is isotropic white
Gaussian with zero mean and variance o°. Then the
MAP cost function is given by



log L( A, s(1), -, s(n)

w— B[ Astm— 26l bt Efts k] + €02

where |lell &1 is defined as e’f'e and
Ff{-)=—1logp-) (pA-) represent the probability
density function of source s,;). And C is an
irrelevant constant. The independent component s;
are here constrained to have unit variance.

The optimal nonlinear  function k  for
reconstructing independent components s; is given
by

S=w A », 13)
where .
BN w) =(1— Aut P (), 14
where f(u)=—d§f)‘. ‘

Since we are dealing with digitally  modulated
communication signals, it is reasonable to assume
that all sources have uniform distribution with zero
mean and unit variance. Then the probability density
function is given by

ﬁs(sf)=W1§{u(s+\/§)— u(s—V3)}, (15)

where u(-) denotes the unit step function. From
this, assumes the noise variance ¢* is very small,
we obtain the truncation operator from (14), (15)

1) = sign(w) min(|2,V3). amn

The truncation operator in (17) clips the values
outside the interval [—V3, V3], since the uniformly
distributed random variable with unit variance cannot
exceed *V3.

In [1], the alternating variable method was applied
to find a local maximum of (12). Here we apply the
sequential LS to derive our SJML algorithm that is
summarized in Table 2.

The only difference between SLSP and SJML lies

in the reconstruction of ’g, given A. In SLSP, we
used a finite alphabet property so that the projection
onto its nearest alphabet followed LS estimation. In
SJML, the optimal nonlinear reconstruction was
calculated under the uniform density model. With
the different choice of the nonlinear reconstruction
function &, the SJML is applicable to the case where
sources have super-Gaussian distribution. For the
case of super-Gaussian distribution, the sparse code
shrinkage operator was shown to be efficient in the
task of denoising [10).

5. Simulation

We demonstrate the useful behavior of SJML and
compare its performance to SLSP, the nonlinear

u=A (n=1) x(n
"s(n) = sign(@)min(] ul,V3)

N ¢))
f n= =—3%
n n 1, Z(n) “ s(n)“
else o(n) =[1 '.;(n)]
~oy s
) =Tl

k(#n) = P(n—1)z(n)
g(n) = h(n)/[B+ z(n)T h(n))

P(n) =—11§ Tri[ n—1)— g(n) & (n)]
e(n) =x(n)— Aln—1) z(n)
An) = An—1D+ e(n) g (n)

Table 2. Algorithm outline for SJML

PAST and the conventional ICA algorithm.

We assume a uniform linear 3-element antenna
array with each element being half wavelength
spaced.

We consider two digitally modulated QPSK
(Quadriphase Shift Keying) sources with angles of
arrival, [10° , 30° ]. Randomly-chosen initial value is
assigned to A(0) or W0). The density matrix is
assigned to P(0). For SJML and SLSP, we used the
forgetting factor £ is 0.99 and for the ICA algorithm
(with @48 =|§;|2§\,-), we used the learning rate
7=0.001. At the SNR, we carried out 5 independent
runs and calculated averaged BER (see Fig. 1). As
shown in Fig. 1, our algorithm, SJML outperforms
the SLSP, the nonlinear PAST and the ICA
algorithm in the presence of white Gaussian noise.

Besides the BER performance, we also evaluated
the performance of algorithm in terms of the
performance index (PI) that is defined by

PI = -;,(,,—1_17 £ {(gfmﬁij?.{)
() o

where g; is the (i, j)-element of the global system

matrix G= A A=W A. The smaller value of P,
the better performance. The convergence of all
these algorithms are shown in Fig. 2. Since SJML
and SLSP employ the sequential least squares, they
converge to a solution much faster than the gradient
based ICA algorithm. The SLSP shown the fastest
convergence because it exploits the finite alphabet
property. However the computational complexity of
SLSP for M-QAM (M=8 16, 64, ) will be
increased compared to the SJML, because the SLSP
needs more search to project the data into its
nearest constellation.
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Fig. 1. BER performance of SJML, SLSP, the nonlinear PAST and ICA for (a) source 1; (b) source 2.

6. Conclusion

In this paper we proposed the sequential algorithm,
SJML for blind co-channel signal separation. The
key ingredient in the derivation of this algorithm
was the sequential LS method. The algorithm is
much faster than the gradient based source
separation algorithms and are free of leaming rate.
The SJML differs from the SLSP only in the part of
reconstruction of sources, given the estimate of A.
But the computational complexity of SJML for
M-QAM (M=8, 16, 64, ) signals is less expensive
compared to the SLSP, because it employed the
optimal nonlinear reconstruction function whereas the
SLSP exploited the finite property. Simulations
verified the high performance of our algorithm.
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