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Abstract

The Analytic Hierarchy Process (AHP) is well suited
to group decision making and offers numerous benefits as
a synthesizing mechanism in group decisions. To date, the
majority of AHP applications have been in group settings.
In general, aggregation methods employed in AHP can be
largely classified into two methods: geometric mean
method and (weighted) arithmetic mean method. In a
situation where there do not exist clear guidelines for
selection between them, two methods do not always
guarantee the same group decision result. Thus we suggest
a simulation approach for building group consensus as a
complementary tool, even when just group judgments are
required. Without any efforts to make point estimates from
individual diverse preference judgments, a simulation
approach suggests the process how the individual
preference judgments are aggregated into consensus,
displaying possible disagreements as is natural in group

members’ different viewpoints.

1. Introduction

The Analytic Hierarchy Process (AHP), introduced
by Saaty (1980), has also been applied to group decision
problems. Saaty (1989) has discussed several practical and
theoretical aspects of group decision making using AHP.
There are at least two methods employed in AHP for
aggregating group opinions. In the first, geometric mean
method, as a most common group preference aggregation
method in the AHP literature (Aczel and Saaty, 1983;
Saaty and Kearns, 1985; Benjamin et al., 1992; Bard and
Souk,

evaluations as elements in pairwise comparison matrices

1990) utilizes geometric mean of individual

and then priorities are then computed. In the weighted
arithmetic mean method, a simple arithmetic mean of
individual priorities is used to arrive at the group
consensus. In viewpoint of social choice axioms, the
geometric mean method of combining individual opinions
has been shown to violate at least one of the axioms of
group preference aggregation, namely the Pareto
optimality axiom. The other method, the weighted
arithmetic mean method has been found to satisfy all the
axioms except the independence of irrelevant alternatives
and it has been shown that this does not limit the
applicability of this method (Ramanathan and Ganesh,
1994).

In this paper, we consider simulation approach as a
group preference aggregation method rather than deriving
group point estimates from individual pairwise judgments
between criteria or between alternative on each criterion,
which was adopted in many of group AHP applications. In
applying a simulation approach, it is a prerequisite to have
multitude of decision makers (at least the number of scales
used in AHP) involved as is often case in public policy
making for
empirically observed frequency distribution which is

generating random observations from
determined from the frequency of responses. Using the
simulation approach, which reflects diversification of
group members’ preferences as it is, analysis such as
expected weights and expected ranks displays insights into

group decision making context (Ahn, 2000).

2. A simulation approach when multiple decision

makers are involved

Let A,A,,K,A, be a set of N alternatives
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compared in pairs according to a given criterion. We
define a square matrix A¥=(a} ) Vijell n} kK to
be a reciprocal matrix with n alternatives where

a{c j =1/ aIJ‘- ; and a!; indicates that the ith alternative

is af_ ; times more dominant than the jth alternative on

the criterion considered in kth group member’s viewpoint.
Similarly, let C,,C,,K,C, be a set of m common
criteria which is shared among group decision makers. We
define a square matrix C* =(c} ), Vp,qe[l,ml.ke K
to be a reciprocal matrix with m criteria where
c,,=lct, and ¢}  indicates that the ith criterion is

c;, times more important than the jth criterion

considered in kth group member’s viewpoint.
Gathering K decision makers’ pairwise judgments
on criteria and between alternatives on criteria considered,

it can be thought that variable a,, rtanged from

af, =minla, ;,a; ;K ,af1to a’, =max(a},,a} K ,af]

(3 Rt ¥ ) i ij?
and c,, ranged from c,, =min[c, ,c’ K,c;,1 to

Pq g’ Cp.q ’

2

v o_ 1
Cpa —max[cp_q,cp_q,

; K ,c),] can be regarded as variables

bounded between 1/9 and 9 respectively. Let f(a,,),
flc,,) be the empirically observed relative frequency
distribution and F(a,;) , F (c,,) the cumulative
frequency distributionon a,; and ¢, respectively.

Let af"j’ and cg,’) 1L2,K ,R, i,j=12K,n ,

g T
p,q=12K,m be pairwise comparisons of size r
generated from the cumulative frequency distribution
F(a,;) and F(c,,) respectively. Let ¥ be matrix

of which elements are eigenvectors calculated from

generated pairwise comparison, a) and C* be the

eigenvectors  associated with  generated pairwise

@)

»y i rth simulation run. Then final

comparison, ¢
priorities of alternatives considered can be determined as
displaying descending order of magnitude of C® *¥®

The simulated final priorities are sometimes obtained in

case simulated pairwise judgment matrices have high
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inconsistency ratio. To avoid this case, we consider

generated  pairwise  comparison  matrices  with
inconsistency ratio less than or equal to 0.1.

To illustrate the aforementioned simulation process,
we consider an artificial example with three alternatives
evaluated on three criteria and then the example is
extended to illustrate more general case of four
alternatives with five criteria. At first, let the hierarchy to
be used in the example be as shown in Figure 1. It has

three alternatives (A, A,, A,) to be compared using
three criteria, (C,,C,,C,) . And the group members’

pairwise judgment for this hierarchy is shown in Figure 1.
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Figure 1. A typical AHP model

There is a continuum of decision making contexts
ranging from (1) common objectives — contexts where all
parties have (basically) the same objectives, to (2) non-
common objectives — contexts in which parties (or groups
of parties) have non-shared (and sometimes hidden)
objectives, to (3) conflict ~ contexts in which parties seek
concessions from opposing parties. Further the common’
objectives context can be decomposed into following three
situations — consensus building, vote or compromise and
separate models or players (Dyer and Forman, 1992). In
our example, we assume that the participants involved in
decision making process share common objectives for
group consensus building. This approach is especially
useful when judgments are elicited using (Web based)
questionnaires as the group members will not have the
chances to interact with each other so that the judgments
are not influenced.

The preference judgments from group members (X = 25)

are shown in Table 1, where frequencies of preference



judgments about pairs of criteria and alternatives on each
criterion are denoted.

Before analyzing simulation results, let us scrutinize
the preference frequency in Table 1. At first, we can find
the group’s strong tendency which says criterion C; is
most preferred, C; is next, and finally C, that is
C,6C,6C,. And we can infer A ¢ A, ¢ A, on

Ad A DA
A ¢ A, ¢ A, on criterion C; from the frequency between

criterion Cj, on criterion C,, and

alternatives on criterion although there exist some

disagreements. However roughly aggregated group

preference, A, ¢ A, ¢ A, on criterion C; does not have

much power on deciding the final priority because the
weight of criterion C, is evaluated less important than the
other two criteria. Consequently, we are strongly confident

as a group opinion that A, is most preferred, A, is

F (CLZ) A

0.75

0.5

0.25

0 A 4 >
w1 s 13 1 35 7 9

Figure 2. A cumulative distribution on C; ;

Thus the random observation (i.e., pairwise ratio
comparison) is generated from the equation, r=F(c,,),
where re[0,1] is a random number. In this manner, we

can generate random observations C;3 and C,3, which are

used for components of matrix for calculating eigenvectors.

Table 1. Preference frequency from group decision makers

Between criteria

Between alternatives on criterion

Scale C C, G
C. Cn Cyn
A Az An Aspz Ap Ap Apz Ap Ay
9 3 1
7 1 4 5 3 1 2 5 6
5 6 5 7 4 1 1 1 3 3 7 1
3 7 7 1 3 5 3 5 4 3 6 3 3
1 5 3 4 2 8 5 7 6 2 4 4 2
1/3 4 2 3 4 3 7 7 3 6 3 4 5
1/5 2 3 10 1 2 7 5 5 4 2 1 7
1/7 1 7 2 4 5 1 5
1/9 1 2

*; six of 25 persons response that criterion 1 is strongly more important than criterion 2.

secondly, and A, is the least preferred, which is the result
we want to show in a simulation run.

For each of the matrices of the example, discrete
values for the judgments were generated from the
empirically observed distribution. For example, let us
consider the C;; column in Table 1. According to the
relative frequency distribution, we can construct the
cumulative distribution as shown in Figure 2.
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After all matrices were determined, the overall synthesized
priorities were calculated and thus the rank was recorded.
This process was repeated 500 times. Of the 500 -runs,
64% resulted in the first alternative with the first rank,
53% in the third alternative with the second rank, and 77%
in the second alternative with the third rank (See Table 2
for the details).



Table 2. Composite of 500 runs based on empirically

observed distribution function (frequency of each rank)

Composite results

Rank One Two  Three One Two  Three
1 320 25 155 64% 5% 31%
2 142 91 267 28% 18% 53%
3 38 384 78 8% T7% 16%

In the AHP with single decision maker, priorities
with an IR greater than 0.10 are considered to have
judgments which are too random-like (Vargas, 1982). In
the group decision context, each preference judgment with
small inconsistency is combined to build group consensus
which can be ended with large inconsistency. Hence,
pairwise comparison judgments with an IR less than with
0.10 for simulated criteria matrices are considered in
Table 3. Although each alternative has seen each possible
rank, it is clear that alternative one is inclined to be
positioned in the first rank, 81% of the time. Likewise,
alternative two is inclined to be positioned in the third
rank, 89% of the time, and alternative three, 73% of the
time. However, how much confidence can we have in first
two rankings and others? In order to address this question,
we consider the notion of expected rank and expected
weight which wezg suggested by Hauser and Tadikamalla
(1996).

Table 3. Composite of 500 runs with IR<0.1 based on
empirically observed distribution function (frequency of
each rank)

Composite results

One Two  Three One Two  Three

1 405 15 90 81% 3% 18%
2 85 40 365 17% 8% 73%
3 10 445 45 2%  89% 9%

Expected score which can be defined by (1) implies
that we will sum together the product of the fraction of
time each rank occurred and n+1 minus the rank itself
instead of the rank itself because the rank and the fraction

of the time each rank occurred is inversely correlated.
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ESi=i_‘,(pi'k)(n+l—k), Vie[l,nl, (1)

where ES, is the expected score of the ith alternative and
p,, is the proportion of the trials that the ith alternative

had rank k.

Next, let the expected weight to be the normalized
expected scores. When alternatives  are placed in
descending order of the expected weights, the results
reveal the expected rank of alternatives. Hence, we define

ES,

EW, =—" Vie[ln]. ()
ES,

™M=

k=1

i

The expected weights of (2) are determined from the
frequency that each rank occurred for each alternative.
Hence these weights are statistical weights indicating a
composite frequency or a mean of feasible weights around

which we expect the actual weight to be scattered.

Table 4. Expected weight and rank by formula (1) and (2)

Expected
Alternative Expected rank
weight
One 1 0.4637
Two 3 0.1883
Three 2 0.3479

3. Conclusions

To date, the majority of AHP applications have been
in group settings. One reason for this may be that groups
often have an advantage over individuals when there exists
a significant difference between the importance of quality
in the decision and the importance of time in which to
obtain the decision. Another reason may be the best
alternative is selected by comparing alternative solutions,
testing against selected criteria, a task ideally suited for
AHP.

In general, group decision making methods employed
in the AHP can be largely classified into two ways:
geometric mean method and arithmetic mean method. In
the geometric mean method, as a most common group
preference aggregation method in AHP literature,

geometric mean of individual evaluations is used as



clements in pairwise comparison matrices and then
priority are computed. In the arithmetic mean method, a
simple arithmetic mean of the individual priorities is used
to arrive at the group consensus. Making group point
estimates from individual judgments on each attribute is a
solution alternative reflecting group members’ diverse
preferences. However, widely adopted aggregation
methods adopted in AHP literatures do not guarantee the
same group decision result and there do not exist clear
guidelines for selection between two alternatives. In a
situation where exact solutions are sometimes more
important than probabilistic ones and thus combining
judgments for a group working together is so important
and can not be replaced by a statistical approach,
aforementioned aggregation method is recommended to
implement for deriving group judgments. Even in that case,
a simulation approach which reflects diversification of

group members’ preference as it is, is useful as a

complementary tool to get some detailed analysis.
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