Spectral Analyses of Plasma Induced by Laser Welding of Aluminum Alloys

알루미늄 합금의 레이저 용접시 유기하는 플라즈마의 스펙트럼 분석

  • Published : 2001.10.01

Abstract

The paper describes spectroscopic characteristics of plasma induces in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg lines, as well as the intense molecular spectra of A10 and Mg0 formed by chemical reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere, Mg0 and AI0 spectra vanished, but AIH spectrum was detected. The hydrogen source was presumably hydrogen dissolved in the base metals, water absorbed on the surface oxide layer, or $H_2$ and $H_2O$ in the shielding gas. The resonant 1ines of Al and Mg were strongly self-absorbed, in particular, self-absorption of the Mg 1ine was predominant. These results show that the laser induced plasma was made of metal1ic vapor with relatively low temperature and high density.

Keywords