퍼지 준-연속사상에 관하여

ON FUZZY QUASI-CONTINUOUS MAPPINGS

Jin Han Park, Seong Jun Park and Mi Jung Son Division of Mathematical Sciences, Pukong National University Department of mathematics, Dong-A University

ABSTRACT

The aim of this paper is to continue the study of fuzzy quasi-continuous mappings due to Park et al. [12] on fuzzy bitopological spaces.

keywords: fuzzy bitopological spaces, fuzzy quasi-continuous mappings

MSC 1991: 54A40

1. Introduction and preliminaries

Chang [2] used the concept of fuzzy sets to introduce fuzzy topological spaces and several authors continued the investigation of such spaces. From the fact that there are some non-symmetric fuzzy topological structures, Kubiak [8] first introduced and studied

the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological space, and initiated the bitopological aspects due to Kelly [7] in the theory of fuzzy topological spaces. Since then several authors [3,4,6,8-10,12] have contributed to subsequent development of various fuzzy bitopological properties. Recently, Park et al. [12] defined and studied fuzzy quasi-open sets and fuzzy quasi-continuous mappings on fuzzy bitopological spaces. The aim of this paper is to continue the study of fuzzy quasi-continuous mappings between fuzzy bitopological spaces.

For definitions and results not explained in this paper, we refer to the papers [2,11-13] assuming them to be well known. A fuzzy point in X with support $x \in X$ and value $a \ (0 < a \le 1)$ is denoted by x_a . For a fuzzy set A of X, 1-A will stand for the

complement of A. By 0_X and 1_X we will mean respectively the constant fuzzy sets taking on the values 0 and 1 on X.

A system (X, τ_1, τ_2) consisting of a set X with two topologies τ_1 and τ_2 on X is called a fuzzy bitopological space [7] (for short, fbts). A fuzzy set A of a fbts (X, τ_1, τ_2) is called fuzzy quasi-open [12] (briefly, fqo) if for each fuzzy point $x_a \in A$ there is either a $U \in \tau_1$ such that $x_a \in U \leq A$, or a $V \in \tau_2$ such that $x_a \in V \leq A$. A fuzzy set A is fuzzy quasi-closed (briefly, fqc) if the complement 1-A is a fqo set. A fuzzy set A of a fbts (X, τ_1, τ_2) is called a quasi-Q-nbd [12] (resp. quasi-nbd [12]) of a fuzzy point x_a if there exists a fqo set U such that $x_a \neq U \leq A$ (resp. $x_a \in U \leq A$).

Result 1 [12]. A fuzzy set A of a fbts (X, τ_1, τ_2) is fqo if and only if there exist $U \in \tau_1$ and $V \in \tau_2$ such that $A = U \cup V$.

Result 2 [12]. Let A be any fuzzy set of a fbts X. Then $x_a \in \operatorname{qcl}(A)$ if and only if for each fqo quasi-Q-nbd U of x_a , $U \circ A$.

2. Some properties of fuzzy quasicontinuous mappings

A mapping $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be fuzzy quasi-continuous [12] if $f^{-1}(B)$ is fqo in X for each $B \in \sigma_i$, equivalently, $f^{-1}(B)$ is fqc in X for each σ_i -fc set B of Y.

Theorem 2.1. For a mapping $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- (a) f is fuzzy quasi-continuous.
- (b) $f^{-1}(V)$ is fqo in X for each fqo set V of Y.

Proof. (a) \Rightarrow (b): Let V be any fqo set of Y. By result 1, there exist $V_1 \in \sigma_1$ and $V_2 \in \sigma_2$ such that $V = V_1 \cup V_2$. Since f is fuzzy quasi-continuous, $f^{-1}(V) = f^{-1}(V_1 \cup V_2) = f^{-1}(V_1) \cup f^{-1}(V_2)$ is fqo in X.

(b) \Rightarrow (a): Let $V \in \sigma_i$. Since every σ_i -fuzzy open set is fqo, $f^{-1}(V)$ is fqo in X. Hence f is fuzzy quasi-continuous.

Theorem 2.2. For a mapping $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- (a) f is fuzzy quasi-continuous.
- (b) For each fuzzy point x_{α} in X and each fqo quasi-nbd V of $f(x_{\alpha})$, there exists a fqo quasi-nbd U of x_{α} such that $f(U) \le V$.
- (c) For each fuzzy point x_a in X and each quasi-Q-nbd V of $f(x_a)$, there 1s a quasi-Q-nbd U of x_a such that $f(U) \le V$.
- (d) $f(\operatorname{qcl}(A)) \leq \operatorname{qcl}(f(A))$ for each fuzzy set A of X.
- (e) $qcl(f^{-1}(B)) \le f^{-1}(qcl(B))$ for each fuzzy set B of Y.

Proof. (a) \Rightarrow (b): Let x_{α} be any fuzzy point in X and V be any fqo quasi-nbd of $f(x_{\alpha})$. Then $f^{-1}(V) = U$ (say) is a fqo quasi-nbd of x_{α} such that $f(U) \leq V$.

(b) \Rightarrow (c): Let x_{α} be any fuzzy point in X and V be any fqo quasi-Q-nbd of $f(x_{\alpha})$. Since $V(f(x)) + \alpha > 1$, there exists a real

number $\beta > 0$ such that $V(f(x)) > \beta > 1-\alpha$, so that V is fqo quasi-nbd of $f(x)_{\beta}$. By (b), there is a fqo quasi-nbd U of x_{β} such that $f(U) \leq V$. Now, $U(x) \geq \beta$ implies $U(x) > 1-\alpha$ and thus U is a fqo quasi-Q-nbd of x_{α} .

(c) \Rightarrow (d): Suppose that $x_{\alpha} \in \text{qcl}(A)$ such that $f(x_{\alpha}) \notin \text{qcl}(f(A))$. Then there is a fqo quasi-Q-nbd V of $f(x_{\alpha})$ such that $V \notin f(A)$ which implies $A \le 1 - f^{-1}(V)$. By (c), there exists a fqo quasi-Q-nbd of U of x_{α} such that $U \le f^{-1}(V)$. Now, we have

 $A \le 1 - f^{-1}(V) \Rightarrow A \le 1 - U \Rightarrow A \notin U.$

This a contradiction since $x_a \in qcl(A)$.

(d) \Rightarrow (e): Let B be a fuzzy set of Y. Then by (d) we have

 $f(\operatorname{qcl}(f^{-1}(B))) \le \operatorname{qcl}(f(f^{-1}(B))) \le \operatorname{qcl}(B)$ and thus $\operatorname{qcl}(f^{-1}(B)) \le f^{-1}(\operatorname{qcl}(B))$.

(e) \Rightarrow (a): Let B be any fqc set of Y. By (e), $qcl(f^{-1}(B)) \le f^{-1}(qcl(B)) = f^{-1}(B)$ and so $f^{-1}(B)$ is fqc in X. Hence by Theorem 3.1 f is fuzzy quasi-continuous.

Theorem 2.3. Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be one to one and onto. Then f is fuzzy quasi-continuous if and only if $f(\text{qint}(A)) \leq \text{qint}(f(A))$ for each fuzzy set A of X.

Proof. Let A be any fuzzy set of X. Then clearly $f^{-1}(\text{qint}(f(A)))$ is fqo in X. Since f is one to one, we have

 $f^{-1}(\operatorname{qint}(f(A))) \le \operatorname{qint}(f^{-1}(f(A))) = \operatorname{qint}(A)$ and $f(f^{-1}(\operatorname{qint}(f(A)))) \le f(\operatorname{qint}(A))$. Since f is onto, we have

qint $(f(A)) = f(f^{-1}(\text{qint}(f(A)))) \le f(\text{qint}(A))$ Conversely, let B be a fqo set of Y. Then $f(\text{qint}(f^{-1}(B))) \ge \text{qint}(f(f^{-1}(B))) = B$ and thus $f^{-1}(f(\text{qint}(f^{-1}(B)))) \ge f^{-1}(B)$. Since f is one to one, $\text{qint}(f^{-1}(B)) \ge f^{-1}(B)$. This shows that $f^{-1}(B)$ is fqo in X. Hence f is fuzzy quasi-continuous.

Theorem 2.4. Let (X, τ_1, τ_2) and (Y, δ_1, δ_2) be fbts's. If the graph mapping $g:(X, \tau_1, \tau_2) \rightarrow (X \times Y, \delta_1, \delta_2)$ of f, where δ_i is the fuzzy product topology generated by τ_i and σ_i (for i=1,2), defined by g(x)=(x,f(x)) for each

fuzzy quasi-continuous.

Proof. Let V be any fqo set of Y. Then by Lemma 2.4 in [1], we have

 $f^{-1}(V) = 1 \cap f^{-1}(V) = g^{-1}(1 \times V)$.

Since $1 \times V$ is δ_i -fo set of $X \times Y$ and g is fuzzy quasi-continuous, $f^{-1}(V)$ is fqo set of X.

Remark 2.5. For a fbts (X, τ_1, τ_2) , we have $FQT_2 \Rightarrow FQT_1 \Rightarrow FQT_0$ [12].

Theorem 2.6. Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be one to one. If f is fuzzy quasi-continuous and (Y, σ_1, σ_2) is FQT_k , then (X, τ_1, τ_2) is FQT_k , for k=0,1,2.

Proof. We give a proof for k=1 only; the other cases, being similar, are left. Let x_{α} and y_{β} be two distinct fuzzy points in X. When $x \neq y$, $f(x) \neq f(y)$. Since (Y, σ_1, σ_2) is FQT_1 , there exist quasi-nbds U and V of $f(x_{\alpha})$ and $f(y_{\beta})$ respectively such that $f(x_{\alpha}) \not\in V$ and $f(y_{\beta}) \not\in U$. Since f is fuzzy quasi-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are quasi-nbds of x_{α} and y_{β} respectively such that $x_{\alpha} \not\in f^{-1}(V)$ and $y_{\beta} \not\in f^{-1}(U)$.

When x = y and $\alpha \langle \beta$ (say), then f(x) = f(y). Since (Y, σ_1, σ_2) is FQT_1 , there exists a quasi-Q-nbd V of $f(y_\beta)$ such that $f(x_\alpha) \not\in V$. Then $f^{-1}(V)$ is quasi-Q-nbd of y_β such that $x_\alpha \not\in f^{-1}(V)$. Hence (X, τ_1, τ_2) is FQT_1 .

A fuzzy set A of a fbts (X, τ_1, τ_2) which can not be expressed as the union of two fuzzy quasi-separated sets is said to be a fuzzy quasi-connected set [12].

Theorem 2.7. Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a fuzzy quasi-continuous onto mapping. If A is fuzzy quasi-connected in (X, τ_1, τ_2) , then f(A) is fuzzy quasi-connected in (Y, σ_1, σ_2) .

Proof. Suppose that f(A) is not fuzzy quasi-connected in (Y, σ_1, σ_2) . Then there exist fuzzy quasi-separated sets B and C in

Y such that $f(A) = B \cup C$. There exist fqo subsets *U* and *V* such that $B \le U$, $C \le V$, $B \not\in V$ and $C \not\in U$. Since *f* is fuzzy quasicontinuous, $f^{-1}(U)$ and $f^{-1}(V)$ are fqo in *X* and

 $A = f^{-1}(f(A)) = f^{-1}(B \cup C) = f^{-1}(B) \cup f^{-1}(C)$. Also it can be easily seen that $f^{-1}(B)$ and $f^{-1}(C)$ are fuzzy quasi-separated in X. Thus we arrive at a contradiction.

A mapping $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be fuzzy quasi-open [12] (briefly, fq open) (resp. fuzzy quasi-closed [12] (briefly, fq closed)) if f(U) is fqo (resp. fqc) in Y for each τ_i -fuzzy open (resp. τ_i -fuzzy closed) set U of X.

Theorem 2.8. For a mapping $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following are equivalent:

- (a) f is fq open.
- (b) f(A) is fqo in Y for each fqo set A of X.
- (c) $f(\text{qint}(A)) \leq \text{qint}(f(A))$ for each fuzzy set A of X.
- (d) $qint(f^{-1}(B)) \le f^{-1}(qint(B))$ for any fuzzy set B of Y.

Proof. (a) \Rightarrow (b): Let A be any fqo set of X. Then there exist $U \in \tau_1$ and $V \in \tau_2$ such that $A = U \cup V$. Since f is fq open, $f(A) = f(U \cup V) = f(U) \cup f(V)$ is fqo in Y.

- (b) \Rightarrow (a): Straightforward.
- (b) \Rightarrow (c): Let A be any fuzzy set of X. Then by (b) f(qint(A)) is fqo in Y and hence $f(\text{qint}(A)) \leq \text{qint}(f(A))$.
- (c) \Rightarrow (b): Let A be any fqo set of X. Then $f(A) = f(\operatorname{qint}(A)) \le \operatorname{qint}(f(A)) \le f(A)$ and so f(A) is fqo in Y.
- (c) \Leftrightarrow (d): Straightforward.

Theorem 2.9. If $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is fq open, then for each fuzzy set B of Y and each fqc set A of X such that $f^{-1}(B) \leq A$, there is a fqc set C of Y such that $B \leq C$ and $f^{-1}(C) \leq A$.

Proof Let B be a fuzzy set of Y and A be a fqc set of X such that $f^{-1}(B) \le A$. Since

a fqc set of X such that $f^{-1}(B) \le A$. Since f is fq open and 1-A is fqo in X, f(1-A) is fqo in Y and thus $f(1-A) \le$ qint (1-B) = 1 -qcl(B), i.e. $f^{-1}($ qcl $(B)) \le A$. Put C =qcl(B). Then C is a fqc set of Y such that $B \le C$ and $f^{-1}(C) \le A$.

Theorem 2.10. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be fbts's and $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be one to one and onto. Then f is fq closed if and only if $f^{-1}(\operatorname{qcl}(B)) \leq \operatorname{qcl}(f^{-1}(B))$ for each fuzzy set B in Y.

Proof. Straightforward.

Theorem 2.11. Let $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g:(Y, \sigma_1, \sigma_2) \rightarrow (Z, \delta_1, \delta_2)$ be mappings.

- (a) If f and g are fuzzy quasi-continuous, then $g \circ f$ is fuzzy quasi-continuous.
- (b) If $g \circ f$ is fq open and f is fuzzy quasi-continuous and onto, then g is fq open.
- (c) If $g \circ f$ is fq open and g is fuzzy quasi-continuous and one to one, then f is fq open.

Proof Straightforward.

References

- [1]. K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1981) 14--32.
- [2]. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182--190.
- [3]. N.R. Das and D.C. Baishya, *Fuzzy bitopological space and separation axioms*, J. Fuzzy Math. 2 (1994) 389--396.

- [4]. N.R. Das and D.C. Baishya, On fuzzy open maps, closed maps and fuzzy continuous maps in a fuzzy bitopological spaces, (Communicated).
- [5]. B. Ghosh, Fuzzy extremally disconnected spaces, Fuzzy Sets and Systems 46 (1992) 245--250.
- [6]. A. Kandil, *Biproximaties and fuzzy bito-pological spaces*, Simon Stevin 63 (1989) 45--66.
- [7]. J.C. Kelly, *Bitopological spaces*, Proc. London Math. Soc. 13 (1963) 71-89.
- [8]. T. Kubiak, Fuzzy bitopological spaces and quasi-fuzzy proximities, Proc. Polish Sym. Interval and Fuzzy Mathematics, Poznan, August (1983) 26–29.
- [9]. S.S. Kumar, On fuzzy pairwise α-continuity and fuzzy pairwise pre-continuity, Fuzzy Sets and Systems 62 (1994) 231--238.
- [10]. S.S. Kumar, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994) 421--426.
- [11]. S. Nanda, *On fuzzy topological spaces*, Fuzzy Sets and Systems 19 (1986) 193--197.
- [12]. J.H. Park, J.H. Park and S.Y. Shin, Fuzzy quasi-continuity and fuzzy quasi-separation axioms, 한국퍼지 및 지능 시스템학회 논문집 8(7) (1998) 83--91.
- [13]. P.M. Pu and Y.M. Liu, Fuzzy topology I. Neighborhood structure of fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571--599.
- [14]. C.K. Wong, Fuzzy topology: Product and quotient theorems, J. Math. Anal. Appl. 45 (1974) 512--521.
- [15]. H.T. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 126 (1987) 409--423.