퍼지연속함수와 퍼지 집합값 함수

Fuzzy Continuous Mappings and Fuzzy Set-Valued Mappings

유장현, 허걸* 원광대학교 수학·정보통계학부

J.H. Ryou and K.Hur*
Division of Mathematics and Informational Statistics
Wonkwang University Iksan, Chonbuk, 579–792
e-mail:kulhur@wonkwang.ac.kr

Abstract

First, we study some properties of F-continuities. Second, we introduce the concept of fuzzy set-valued mappings and study some properties of fuzzy set-valued mappings and fuzzy set-valued continuous mappings. Finally, we introduce the concept of fuzzy semi-continuous of fuzzy set-valued mappings and investigate their some properties.

Key words and phrases: fuzzy set-valued mapping, F-continuities of fuzzy set-valued mapping.

1. Preliminaries.

We list some concepts and results needed in the later sections.

Definition 1.1[1]. Let be a mapping, let $A \in I^X$ and let $B \in I^Y$. Then:

(1) The inverse image of B under f, denoted by $f^{-1}(B)$ is a fuzzy set in X defined by for each $x \in X$,

 $[f^{-1}(B)](x) = B(f(x)) = (B \circ f)(x)$

(2) The *image* of A under f, denoted by f(A) is a fuzzy set in Y defined by for each $y \in Y$,

 $f(A) = \begin{cases} \sup_{y = f(x)} A(x), & \text{if } y \in f(X), \\ 0, & \text{if } y \notin f(X). \end{cases}$ By the above definition, $f: I^X \to I^Y$ and $f^{-1}: I^Y \to I^X$ are mappings.

Result 1.A[1,Theorem 4.1:9,Theorem 4.1]. Let $f: X \rightarrow Y$ be a mapping, let $\{A_a\}_{a \in A} \subset I^X$ and let $\{B_a\}_{a \in A} \subset I^Y$. Then:

$$(1) f^{-1}(\bigcup_{\alpha \in \Lambda} B_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(\mathcal{B}_{\alpha})$$
$$f^{-1}(\bigcap_{\alpha \in \Lambda} B_{\alpha}) = \bigcap_{\alpha \in \Lambda} f^{-1}(B_{\alpha})$$

(2) $f(\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \bigcup_{\alpha \in \Lambda} f(A_{\alpha})$

 $f(\bigcap_{\alpha\in\Lambda}A_{\alpha})\subset\bigcap_{\alpha\in\Lambda}f(A_{\alpha})$

- (3) $f(f^{-1}(B)) \subset B$ for each $B \in I^{Y}$. In particular, if f is surjective, then $f(f^{-1}(B)) = B$
- (4) $A \subset f^{-1}(f(A))$ for each $A \in I^X$. In particular, if f is injective, then $f^{-1}(f(A)) = A$
- (5) Let $g: Y \rightarrow Z$ be a mapping. If $B \in I^Z$, then $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ If $A \in I^X$, then $(g \circ f)(A) = g(f(A))$
- (6) If f is bijective, then $[f(A)]^c = f(A^c)$ for each $A \in I^X$.

Proposition 1.2. Let $f: X \rightarrow Y$ be a mapping, let $A \in I^X$ and let $B \in I^Y$. Then:

- (1) $f(A) = \emptyset$ if and only if $A = \emptyset$
- (2) $f(A) \cap B = f(A \cap f^{-1}(B))$

Result 1.B[9,Proposition 4.2]. Let $f: X \rightarrow Y$ mapping and let $x_{\lambda} \in F_{p}(X)$.

- (1) If for each $B \in I^Y$, $f(x_{\lambda})qB$, then $x_{\lambda}qf^{-1}(B)$.
- (2) If for each $A \in I^X$, $x_{\lambda}qf(A)$.

Result 1.C[7,Lemma 4.1]. For sets X

and Y, let $f: X \to Y$ a mapping and let $A, B \in I^X$. If $A \neq B$, then $f(A) \neq f(B)$.

Definition 1.3[1]. A mapping $f:(X,T) \rightarrow (Y,U)$ is said to be *fuzzy continuous* (in short, F-continuous) if $f^{-1}(B) \in T$ for each $B \in U$. The mapping f is called a *fuzzy homeomorph* -ism (in short, F-homeomorphism) if f is bijective, and both f and f^{-1} are F-continuous.

Result 1.D[6,Result 3.1]. Let X and Y be fts's. Then a mapping $f: X \to Y$ is F-continuous if and only if for each $x_{\lambda} \in F_{p}(X)$ and each $V \in \mathcal{N}_{F}(f(x_{\lambda}))$, there is $U \in \mathcal{N}_{F}(f(x_{\lambda}))$ such that $f(U) \subset V$.

Result 1.E[2,Theorem 2.7]. Let X and Y be fts's. Then a mapping $f: X \rightarrow Y$ is F-continuous if and only if for each $x_{\lambda} \in F_{p}(X)$ and each open q-nbd V of $f(x_{\lambda})$ in Y, there exists an open q-nbd U of x_{λ} in X such that $f(U) \subset V$.

Result 1.F[5,Theorem 1.1]. Let (X, T_X) and (Y, T_Y) be fts's and let $f: X \rightarrow Y$ a mapping. Then the following are equivalent:

- (1) \hat{f} is F-continuous.
- (2) For each $B \in FC(Y)$, $f^{-1}(B) \in FC(X)$
- (3) For each $V \in \mathcal{F}$, $f^{-1}(V) \in T_X$ where \mathcal{F} is a subbase for T_Y .
- (4) For each $x_{\lambda} \in F_{p}(X)$ and each $V \in \mathcal{N}_{F}$ $(f(x_{\lambda}))$, there is $U \in \mathcal{N}_{F}(x_{\lambda})$ such that $f(U) \subset V$.
- (5) For each $x_{\lambda} \in F_{p}(X)$ and each $V \in \mathcal{N}_{Q}(f(x_{\lambda}))$, there is $U \in \mathcal{N}_{Q}(x_{\lambda})$ such that $f(U) \subset V$.
- (6) For each fuzzy net $s = \{s_n\}_{n \in D}$ if s converges to x_{λ} , then $f \circ s = \{f(s_n)\}_{n \in D}$ is a fuzzy net in Y and converges to $f(x_{\lambda})$.
- (7) For each $A \in I^X$, $f(clA) \subset clf(A)$
- (8) For each $B \in I^Y$, $clf^{-1}(B) \subset f^{-1}(clB)$

From Result 1.F, we obtain the following result:

Proposition 1.4. Let X and Y be fts's, let $f: X \rightarrow Y$ a mapping and let $x_{\lambda} \in F_{b}(X)$.

Then the following are equivalent:

- (1) f is F-continuous at x_{λ} .
- (2) $x_{\lambda} \in f^{-1}(intB) \Rightarrow x_{\lambda} \in intf^{-1}(B)$ for each $B \in I^{Y}$.
- $(3) x_{\lambda} \in clf^{-1}(B) \Rightarrow x_{\lambda} \in f^{-1}(clB) \text{ for each } B \in I^{Y}.$

Definition 1.5[8]. Let X and Y be fts's. Then a mapping $f: X \rightarrow Y$ said to be

- (1) fuzzy open (in short, F-open) if for each $U \in FO(X)$, $f(U) \in FO(Y)$.
- (2) fuzzy closed (in short, F-closed) if for each $U \in FC(X)$, $f(U) \in FC(Y)$

Result 1.G[9,Theorem 4.3]. If $f: X \rightarrow Y$ is F-open, then $f^{-1}(clB) \subset clf^{-1}(B)$ for each $B \in I^Y$.

Corollary 1.G[9,Corollary 4.4]. If $f: X \rightarrow Y$ is F-open and F-continuous, then $f^{-1}(clB) = clf^{-1}(B)$ for each $B \in I^Y$.

Result 1.H[1]. If $f: X \rightarrow Y$, $g: Y \rightarrow Z$ are F-continuous, then $g \circ f: X \rightarrow Z$ is F-continuous.

2. Fuzzy-continuous mappings.

Proposition 2.1. A mapping $f: X \rightarrow Y$ is F-continuous if and only if for each $B \in I^Y$, $f^{-1}(intB) \subset intf^{-1}(B)$

Proposition 2.2. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be mappings. If f, g are F-open (or F-closed), then $g \circ f$ is F-open(or F-closed).

Proposition 2.3. Let $f: X \rightarrow Y$ be injective. Then the inverse mapping $f^{-1}: f(X) \rightarrow X$

exists. Moreover f is F-continuous if and only if f^{-1} is F-open.

Proposition 2.4. A mapping $f: X \rightarrow Y$ is F-open if and only if for each $A \in I^X$, $f(intA) \subset intf(A)$

Proposition 2.5. Let $f: X \rightarrow Y$ be injective. If f is F-continuous, then $intf(A) \subset f(intA)$ for each $A \in I^X$.

Corollary 2.5. Let $f: X \rightarrow Y$ be F-continuous, F-open and injective. Then for each $A \in I^X$, f(intA) = intf(A)

Proposition 2.6. A mapping $f: X \rightarrow Y$ is F-closed if and only if for each $A \in I^X$, $clf(A) \subset f(clA)$

Corollary 2.6. A mapping $f: X \to Y$ is F-continuous and F-closed if and only if for each $A \in I^X$, f(clA) = clf(A)

Proposition 2.7. Let $f: X \rightarrow Y$ be a mapping.

- (1) If X is a fuzzy discrete space, then f is F-continuous.
- (2) If Y is a fuzzy indiscrete space, then f is F-continuous.
- (3) If X and Y are fuzzy discrete spaces, then f is F-continuous and F-open.
- (4) For fuzzy discrete spaces, f is a F-homeomorphism if and only if f is bijective.

Theorem 2.8. Let X and Y be fts's and let $f: X \rightarrow \mathbb{B}$ ijective. Then the following are equivalent:

- (a) f is a F-homeomorphism.
- (b) f and f^{-1} are F-open.
- (c) f and f^{-1} are F-closed.

Theorem 2.9. Let X and Y be fts's and let $f: X \rightarrow Y$ bijective. Then the following are equivalent:

- (a) f^{-1} is F-continuous.
- (b) f is F-open.
- (c) f is F-closed.

Corollary 2.9. Let X and Y be fts's and let $f: X \rightarrow \text{Mijective}$. Then the following are equivalent:

- (a) f is a F-homeomorphism.
- (b) f is F-open and F-continuous.
- (c) f is F-closed and F-continuous.

Proposition 2.10. For fts's X and Y, let us define $X \cong Y$ to mean that there a F-homeomorphism $f: X \to Y$ Then \cong is an equivalence relation on the family of all fts's.

Theorem 2.11. Let (X, T_X) be a fts, let Y a set and let $f: X \to Y$ a mapping. Let $T_Y = \{U \in I^Y: f^{-1}(U) \in T_X\}$ Then we have the following properties:

- (a) T_Y is a fuzzy topology on Y.
- (b) $f: X \rightarrow Y$ s F-continuous.
- (c) If \mathcal{U} is a fuzzy topology on Y such

that $f: X \rightarrow (Y \mathcal{U})$ is F-continuous, then T_Y is finer than \mathcal{U} .

Theorem 2.12. Let X be a set, let (Y, T_Y) a fts and let $f: X \to Y$ a mapping. Let $T_X = \{U \in I^X : \text{ there is } V \in T_Y \text{ such that } U = f^{-1}(V).\}$ Then we have the following properties:

- (a) T_X is a fuzzy topology on X.
- (b) $f: X \rightarrow Y$ is F-closed.
- (c) If \mathcal{U} is a fuzzy topology on X such that $f: (X\mathcal{U}) \to Y$ is F-continuous, then T_X is coarser than \mathcal{U} .

F-continuities of fuzzy setvalued mappings

Definition 3.1. A mapping is said to be *fuzzy set-valued* if it's values are fuzzy sets.

Hence, for instance, $f: I^X \to I^Y$ and $f^{-1}: I^Y \to I^X$ are fuzzy set-valued(See Definition 1.1).

In particular, a fuzzy set-valued mapping $F: Y \rightarrow I^X$ is called a fuzzy multiplication and denoted by $F: Y \rightarrow X$ (See [4]).

Definition 3.2. Let $F: Y \rightarrow I^X$ be a fuzzy set-valued mapping, let $A \in I^Y$ and let $\mathcal{B} \subset I^X$. Then:

(1) The image of A under F, F(A) is defined by :

 $F(A) = \{B \in I^X : B = F(a) \text{ for some } a \in A_0\}.$

(2) The inverse image of \mathcal{B} under F, $F^{-1}(\mathcal{B})$ is defined by:

$$F^{-1}(\mathcal{B}) = \{ y \in Y : F(y) \in \mathcal{B} \}$$

Example 3.3. Let $Y = \{a, b, c\}$, $X = \{x, y, z\}$ and let $F: Y \rightarrow I^X$ be the fuzzy set-valued mapping defined by :

 $F(a) = \{(x,0.3), (y,0.6), (z,0.7)\}$

 $F(b) = \{(x, 0.7), (y, 0.2), (z, 0.6)\},\$

 $F(a) = \{(x, 0.4), (y, 0.5), (z, 0.7)\}.$

Let $A = \{(a,0.4), (b,0.3), (c,0.5)\} = \{(a,0.3), (b,0.1), (c,0.3)\}$ det $B = \{\{(x,0.3), (y,0.6), (z,0.7)\} = \{(x,0.7), (y,0.2), (z,0.7)\}$, $\{(y,0.6), (z,0.4)\}$ Then:

 $F(A) = F(B) = \{F(a), F(b), F(c)\}\$ $F(b) = \{F(b), F^{-1}(B) - \{a, b\}\}\$

 $F(b_{0.5}) = \{F(b)\} \quad F^{-1}(\mathcal{B}) = \{a, b\}.$

For each $A \in I^X$, let I^A denoted the set of all fuzzy sets in X contained in A.

Hence $I^A = \{E \in I^X : E \subseteq A\}$.

Definition 3.4. Let F_1 , F_2 : $Y \rightarrow I^X$ be fuzzy set valued mappings. Then

- (1) $F_1 \subset F_2$ if and only if $F_1(y) \subset F_2(y)$ for each $y \in Y$.
- (2) $F = F_1 \cup F_2$ if and only if $F(y) = F_1(y) \cup F_2(y)$ for each $y \in Y$.
- (3) $F = F_1 \cap F_2$ if and only if $F(y) = F_1(y) \cap F_2(y)$ for each $y \in Y$.

From Definition 3.2. and 3.4, we obtain the following result:

Proposition 3.5. Let F_1 , $F_2: Y \rightarrow I^X$ be fuzzy set-valued and $A \in I^X$. Then:

- (1) If $F_1 \subset F_2$, then $F_2^{-1}(I^A) \subset F_1^{-1}(I^A)$
- (2) If $F = F_1 \cup F_2$ then $F^{-1}(I^A) = F_1^{-1}(I^A) \cap F_2^{-1}(I^A)$
- (2a) If $F_a: Y \rightarrow I^X$ is fuzzy set-valued for each $a \in \Lambda$, then $(\bigcup_{a \in \Lambda} F_a)^{-1}(I^A) = \bigcap_{a \in \Lambda} F_a^{-1}(I^A)$.
- (3) If $F = F_1 \cap F_2$ then $F_1^{-1}(I^A) \cup F_2^{-1}(I^A) \subset F^{-1}(I^A)$.
- (3a) If $F_a : Y \rightarrow I^X$ is fuzzy set-valued for each $\alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} F_a^{-1}(I^A) \subset (\bigcap_{\alpha \in \Lambda} F_\alpha)^{-1}(I^A)$

Proposition 3.6. Let Y be fts, I_0^X a fuzzy hyperspace, $F: Y \rightarrow I_0^X$ a fuzzy set valued mapping and $A \in I^X$. Then:

$$F^{-1}(I_0^A) = \{ y \in Y : F(y) \subset A \}$$

and

$$Y - F^{-1}(I_0^{A^c}) = \{ y \in Y : F(y) qA \}$$

In this case, $F^{-1}(I_0^A)$ (resp. $Y - F^{-1}(I_0^{A'})$ is called the *upper inverse* (resp. *lower inverse*) of A and denoted by $F^+(A)$ (resp. $F^-(A)$) (See [3]).

We obtain the similar result as Theorem 2.3 in [3]:

Proposition 3.7. Let Y be a fts, I_0^X a fuzzy hyperspace and $F: Y \rightarrow I_0^X$ a fuzzy set-valued mapping. Then

$$F^{-}(G^{c}) = Y - F^{+}(G \text{ for each } G \in I^{X}.$$

Theorem 3.8. Let Y be a fts, I_0^X a fuzzy hyperspace and $F: Y \rightarrow I_0^X$ a fuzzy set-valued mapping. Then the following

are equivalent:

- (1) F is F-continuous.
- (2) $F^+(A) \in FO(Y)$ for each $A \in FO(X)$ and $F^+(F) \in FC(Y)$ for each $F \in FC(X)$.
- (3) $F^-(F) \in FC(Y)$ for each $F \in FC(X)$ and $F^-(A) \in FO(Y)$ for each $A \in FO(X)$.

Corollary 3.8. F is F-continuous at $y_0 \in Y$ if and only if the following both implications hold:

 $y_0 \in F^+(G) \Rightarrow y_0 \in intF^+(G)$ whenever G is a fuzzy open set in X,

 $y_0 \in clF^+(K) \Rightarrow y_0 \in F^+(K)$ whenever K is a fuzzy closed set in X.

Proposition 3.9. The union of two F-continuous fuzzy set-valued mappings $F = F_0 \cup F_1$ is F-continuous.

Corollary 3.9. The union $K \cup L$, considered as a mapping of $I_0^X \times I_0^X$ onto I_0^X is F- continuous.

4. Fuzzy semi-continuities of fuzzy set-valued mappings

Definition 4.1. A fuzzy set-valued mapping $F: Y \rightarrow I_0^X$ is said to be:

- (1) fuzzy upper semi-continuous (in short, F-usc) if for each $V \in FO(X)$, $F^+(V) \in FO(Y)$.
- (1a) fuzzy upper semi-continuous at $y \in Y$ (in short, F-usc at y) if for each $V \in FO(X)$ with $y \in F+(V)$ $y \in intF^+(V)$.
- (2) fuzzy lower semi-continuous (in short, F-lsc) if for each $G \in FC(X)$, $F^+(G) \in FC(Y)$.
- (2a) fuzzy lower semi-continuous at $y \in Y$ (in short, F-lsc at y) if for each $G \in FC(X)$ with $y \in clF^+(G)$ $y \in F^+(G)$

Proposition 4.2. Let $F: Y \rightarrow I_0^X$ be fuzzy set-valued. Then:

- (1) F is F-usc if and only if for each $G \in FC(X)$, $F^-(G) \in FC(Y)$
- (2) F is F-lsc if and only if for each $V \in FO(X)$, $F^{-}(V) \in FO(Y)$

The nexted result follows easily from Definition 4.1:

Proposition 4.3. F is F-usc(resp. F-lsc) if and only if it is F-usc(resp. F-lsc) at each $y \in Y$.

Theorem 4.4. F is F-continuous at y if and only if F is both F-usc and F-lsc at y.

Hence F is F-continuous if and only if F is both F-usc and F-lsc.

Theorem 4.5(Generalized Heine Condition). $F: Y \rightarrow I_0^X$ is F-lsc at $y \in Y$ if and only if for each $B \in I^Y$ with $y \in clB$, $F(y) \subset cl[\bigcup F(B)]$.

Corollary 4.5. F is F-lsc if and only if $\bigcup F(clB) \subset cl[\bigcup F(B)]$ for each $B \in I^Y$.

Theorem 4.6 (Generalized Cauchy Condition). $F: Y \rightarrow I_0^X$ is F-usc at $y \in Y$ if and only if for each $G \in FO(X)$ with $F(y) \subset G$, there exists $H \in FO(Y)$ such that $y \in H$ and $\bigcup F(H) \subset G$, i.e., $z_\lambda \in H \Rightarrow F(z) \subset G$.

Theorem 4.7. Let X be a $FT_1(i)$ -space and let A a lower fuzzy set in X. If $F: Y \rightarrow I_0^X$ is

F-usc, then $\{y \in Y : A \subset F(y)\} \in FC(Y)$

Theorem 4.8. Let $f: Y \to X$ be a mapping and let X a $FT_1(i)$ -space. Let $F: Y \to I_0^X$ be the mapping defined by $F(y) = \{f(y_\lambda)\}$ for each $y \in Y$ and a fixed $\lambda \in I_0$. If F is either F-usc or F-lsc at $y \in Y$, then F-continuous at y_λ .

Theorem 4.9. Let $f: X \to Y$ be a mapping, let $F: Y \to I_0^X$ a fuzzy set-valued mapping and let $f(x_\lambda) = y_\lambda$ If f is F-continuous at x_λ and F is F-usc(resp. F-lsc) at y, then $H = F \circ f$ is F-usc(resp. F-lsc) at x.

Theorem 4.10. The union of two F-usc mappings at y is F-usc at y.

Theorem 4.11. The union of two F-lsc mappings at y is F-lsc at y. More generally, if each F_t ($t \in \Lambda$ arbitrary) is F-lsc at y, then $F = \bigcup_{t \in \Lambda} F_t$ is F-lsc at y.

References

- [1.] C.L.Chang, Fuzzy topological spaces, J.Math. Anal. Appl., 24(1968), 182-190.
- [2.] S.Ganguly and S.Saha, A note on compactness in a fuzzy setting, Fuzzy Sets And Systems, 34(1990), 117–124.
- [3.] M.N.Mukherjee and S.Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41(1991), 113-132.
- [4.] N.S.Papageorgiou, Fuzzy topology and fuzzy miltifunctions, J. Math. Anal. Appl., 109(1985), 397-425.
- [5.] Pu-Pao-Ming and Liu Ying-Ming, Fuzzy topology. II. Product and Quotient Spaces, J. Math. Anal. Appl., 77(1980), 20-33.
- [6.] S.Saha, Fuzzy δ-Continuous mappings,
 J. Math. Anal. Appl., 126(1987), 130-142.
- [7.] R.D.Sarma and N.Ajmal, Fuzzy nets and their application, Fuzzy Sets and Systems, 51(1992), 41-51.
- [8.] C.K.Wong, Fuzzy topology, Product and quotient theorems, J. Math. Anal. Appl., 45(1974), 512–521.
- [9.] T. H. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl., 126(1987), 409-423.