On type-2 fuzzy set-valued mappings

H.M. Kim, L.C. Jang ° and J.D. Jeon 경희대학교 이학부 °건국대학교 정산수학과

Abstract

In this paper, we define type-2 fuzzy mappings on L-L fuzzy numbers and discuss some properties of these mappings.

1. Preliminaries and definitions

Let X be a finite set. A fuzzy set A in X is defined by $A = \{ (x, \mu_A(x)) | x \in X \}$, where $\mu_A : X \rightarrow [0,1]$ is the membership function of A. When $\mu_A(x)$ becomes a fuzzy set, A becomes a type-2 fuzzy set.

Now, since a type-2 fuzzy set is obtained by assigning fuzzy membership values to elements of X, we can extend the set-theoretic operations of ordinary fuzzy set theory to allow them to deal with fuzzy grades of membership.

Definition 1.1 [2] A fuzzy set M of [0,1] is called a fuzzy number if

- (1) M is normal;
- (2) M is convex;
- (3) μ_M is piecewise continuous.

Definition 1.2 [2] A fuzzy number M of [0,1] is said to be L-R fuzzy number, $M=(m,\alpha,\beta)_{LR}$ if its membership function is defined by

(i) when $\alpha > 0$ and $\beta > 0$,

$$\mu_{M(x)} = \begin{cases} L(\frac{m-x}{\alpha}) & \text{for } m - \alpha \le x \le m \le 1, x \ge 0, \\ R(\frac{x-m}{\beta}) & \text{for } m + \beta \ge x \ge m \ge 0, x \le 1, \\ 0 & \text{else,} \end{cases}$$

(ii) when $\alpha = 0$ and $\beta > 0$,

$$\mu_{M(x)} = \begin{cases} R(\frac{x-m}{\beta}) & \text{for } m+\beta \ge x \ge m \ge 0, x \le 1, \\ 0 & \text{else,} \end{cases}$$

(iii) when $\alpha > 0$ and $\beta = 0$,

$$\mu_{M(x)} = \begin{cases} L(\frac{m-x}{\alpha}) & \text{for } m - \alpha \le x \le m \le 1, x \ge 0, \\ 0 & \text{else,} \end{cases}$$

(iv) when $\alpha = 0$ and $\beta = 0$,

$$\mu_{M(x)} = \begin{cases} 1 & \text{for } x = m \\ 0 & \text{else.} \end{cases}$$

where, α and β are called the left and right spreads of an L-R fuzzy number M, respectively, and L and R are strictly decreasing continuous functions from [0,1] to [0,1] such that L(0)=R(0)=1 and L(1)=R(1)=0. In this case, L and R is called the left and the right shape function, respectively.

 A_{LR} will stand for the class of all L-R fuzzy numbers of [0,1].

Definition 1.3 [2] Let $M_x = (m_x, \alpha_x, \beta_x)_{LR}$ and $M_y = (m_y, \gamma_y, \delta_y)_{LR}$ be elements to A_{LR} . Then $\max^{\sim} (M_x, M_y)$, $\min^{\sim} (M_x, M_y)$ are defined by $\max^{\sim} (M_x, M_y)$ $= (m_x \vee m_y, \alpha_x \wedge \gamma_y, \beta_x \vee \delta_y)_{LR},$ $\min^{\sim} (M_x, M_y)$ $= (m_x \wedge m_y, \alpha_x \vee \gamma_y, \beta_x \wedge \delta_y)_{LR},$ where \vee and \wedge are \max and \min , resp-

Definition 1.4 [2] Let $M = (m, \alpha, \beta)_{LR}$ and

ectively.

Proceedings of KFIS 2001 Fall Conference, 2001. 12. 1

 $M^1=(1,0,0)_{RL}$ be elements to A_{LR} and A_{LR} , respectively. The complemented M^* of M is defined by $M^*\equiv M^1 \ominus M = (1-m,\beta,\alpha)_{RL}$.

2. Main results

Let $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_n\}$ be finite sets. We consider that A_{LL} is the class of all L - L fuzzy numbers of [0,1]. The collection of type-2 fuzzy set-valued mappings of a set X is denoted by $F_2(X)$, i.e., $M \in F_2(X) \iff M: X \to A_{LL}$ by $M(x) = M_x$.

Definition 2.1 We say that ψ is type-2 fuzzy set-valued mappings on $X \times Y$ if (1) $\psi: X \times Y \to A_{LL}$ by $\psi(x, y) = M_{xy} \in A_{LL}$, $\forall (x, y) \in X \times Y$ (2) $\forall x \in X$, there exists $y \in Y$ such that $\max^{\sim} (\psi(x, y)) = (1, 0, 0)_{LL} = M^1$.

Definition 2.2 Let ψ be type-2 fuzzy set-valued mappings on $X \times Y$. T_{ψ} is called the inverse image operator associated with ψ iff $\forall M \in F_2(Y)$, $\forall x \in X$, $(T_{\psi}M)(x) = \max^{\sim} (\min^{\sim} (M_{xy}, M_y))$.

From the definition 2.2, it is ease to show that T_{ϕ} : $F_2(Y) \rightarrow F_2(X)$ is a mapping from type-2 fuzzy sets of Y to type-2 fuzzy sets of X.

Definition 2.3 [2] Let $M_x = (m_x, \alpha_x, \beta_x)_{LL}$ and $N_x = (n_x, \gamma_x, \delta_x)_{LL}$ be elements of A_{LL} . Then, we define the order \leq of M_x and N_x ; $M_x \le N_x$ if and only if $m_x \le n_x$, $\alpha_x \ge \gamma_x$, and $\beta_x \le \delta_x$.

Definition 2.4 [2] Let $M, N: X \rightarrow A_{LL}$ be type-2 fuzzy set-valued mappings of a set X. Then we define the order \leq of M and N; $M \leq N$ iff $M_x \leq N_x$, $\forall x \in X$.

Proposition 2.5 Let T_{ψ} is the inverse image operator associated with ψ and $M^0 = (0,0,0)_{LL}$. Then we have

- (1) $(T_{\phi} M^{0})(x) = (0, \min \alpha_{xy}, 0)_{LL}$
- (2) $(T_{d}M^{1})(x) \leq M^{1}$,
- (3) T_{ψ} is order preserving.

Proof.

(1) $(T_{\psi} M^{0})(x)$ = $\max^{\sim} (\min^{\sim} (M_{xy}, M^{0}_{y}))$ = $\max^{\sim} (\min^{\sim} ((m_{xy}, \alpha_{xy}, \beta_{xy})_{LL}, (0,0,0)_{LL}))$ = $\max^{\sim} ((m_{xy} \land 0, \alpha_{xy} \lor 0, \beta_{xy} \land 0)_{LL})$ = $\max^{\sim} ((0, \alpha_{xy}, 0)_{LL})$ = $(0, \min \alpha_{xy}, 0)_{LL}$

(2) By the definitions 2.1 and 2.4, we have

- $(T_{\phi} M^{1})(x)$ $= \max^{\sim} (\min^{\sim} (M_{xy}, M^{1}_{y}))$ $= \max^{\sim} (\min^{\sim} ((m_{xy}, \alpha_{xy}, \beta_{xy})_{LL}, (1,0,0)_{LL}))$ $= \max^{\sim} ((m_{xy} \wedge 1, \alpha_{xy} \vee 0, \beta_{xy} \wedge 0)_{LL})$ $= \max^{\sim} ((m_{xy}, \alpha_{xy}, 0)_{LL})$ $\leq \max^{\sim} ((m_{xy}, \alpha_{xy}, \beta_{xy})_{LL})$ $= \max^{\sim} (\phi(x, y))$ $= (1,0,0)_{LL} = M^{1}$
- (3) Let $M \le N$ in $F_2(Y)$. Since max \sim is nondecreasing, we have

$$(T_{\psi} M)(x) = \max^{\sim} (\min^{\sim} (M_{xy}, M))$$

$$\leq \max^{\sim} (\min^{\sim} (M_{xy}, N)) = (T_{\psi} N)(x), \quad \forall x$$

$$\in X.$$

We note that if $M, N \in F_2(Y)$, then $\max^{\sim} (M, N)$ means $\max^{\sim} (M, N)(y) = \max^{\sim} (M_y, N_y)$ for all $y \in Y$ and $\max^{\sim} (T_{\phi}M, T_{\phi}N)$ means $\max^{\sim} (T_{\phi}M, T_{\phi}N)(x) = \max^{\sim} (T_{\phi}M(x), T_{\phi}N(x))$ for all $x \in X$.

Proposition 2.6

$$T_{\psi}(\max^{\sim}(M,N)) = \max^{\sim}(T_{\psi}M,T_{\psi}N)$$

Proof. Let $M_{xy} = (m_{xy},\alpha_{xy},\beta_{xy})_{LL},\ M_{y}$
 $=(m_{y},\alpha_{y},\beta_{y})_{LL},\ \text{and}\ N_{y} = (n_{y},\gamma_{y},\delta_{y})_{LL}.$
Since \max^{\sim} , \min^{\sim} are distributive law on A_{LL} , we have

$$T_{\psi}(\max^{\sim}(M,N))(x)$$

$$= \max^{\sim} (\min^{\sim} (M_{xy}, \max^{\sim} (M, N)(y)))$$

$$= \max^{\sim} (\min^{\sim} (M_{xy}, \max^{\sim} (M_y, N_y)))$$

$$= \max^{\sim} (\min^{\sim} ((m_{xy}, a_{xy}, \beta_{xy})_{LL}, \max^{\sim} (m_y, a_y, \beta_y)_{LL}, (n_y, \gamma_y, \delta_y)_{LL})))$$

$$= \max^{\sim} (\min^{\sim} ((m_{xy}, \alpha_{xy}, \beta_{xy})_{LL}, (m_{y} \vee n_{y}, \alpha_{y} \wedge \gamma_{y}, \beta_{y} \vee \delta_{y})_{LL}))$$

$$= \max ((m_{xy} \wedge (m_y \vee n_y), \alpha_{xy} \vee (\alpha_y \wedge \gamma_y), \beta_{xy} \wedge (\beta_y \vee \delta_y)_{LL}))$$

$$= \max ((m_{xy} \land m_y) \lor (m_{xy} \land n_y), (a_{xy} \lor)$$

$$(\alpha_{y}) \wedge (\alpha_{xy} \vee \gamma_{y}), (\beta_{xy} \wedge \beta_{y}) \vee (\beta_{xy} \wedge \delta_{y}))_{LL}$$

$$=$$
 max $^{\sim}$ (max $^{\sim}$ (($m_{xy} \land m_y$, $\alpha_{xy} \lor \alpha_y$, $\beta_{xy} \land$

$$(\beta_y)_{LL}, (m_{xy} \wedge m_y, \alpha_{xy} \vee \gamma_y, \beta_{xy} \wedge \delta_y)_{LL}))$$

$$= \max^{\sim} ((T_{\phi}M)(x), (T_{\phi}N)(x))$$

$$= \max^{\sim} (T_{\perp}M, T_{\perp}N)(x) \quad \forall x \in X$$

Therefore, we have

$$T_{\phi}(\max^{\sim}(M,N)) = \max^{\sim}(T_{\phi}M,T_{\phi}N) \square$$

Reference

- [1] D. Dubois and H. Prade, Fuzzy sets and systems; applications, Mathematics in Science and Engineering, 1978.
- [2] L.C. Jang and J.D. Jeon, The set-theoretic operations of L-R fuzzy numbers and cardinalities of type-two fuzzy sets, KFIS, vol. 11, no. 2 (2001) 115-118.
- [3] L.C. Jang and Dan Ralescu, Cardinality concept of type-two fuzzy sets, Fuzzy Sets and Systems, 118 (2001) 479-487.
- [4] S.Khalili, Fuzzy measures and mappings,J. Math. Anal. Appl., 68,(1979) 92-99