Plating Technology for Lead Free Soldering in Japan

Susumu Arai

Environmental Pollution Issues due to Lead contamination from **Electronic Waste such as Printed Circuit Boards**

Latest National Projects for Lead-Free Soldering

- Development of Lead-Free Solder -

3rd Korea-Japan Advanced Semiconductor Packaging Technology Seminar September 13, 2001 in Seoul

Plating Technology for Lead-Free Soldering in Japan

Faculty of Engineering Shinshu University

Dr. S. Arai

Contents

- Introduction
- Types of Surface Finishing for Electronic and Semiconductor Parts
- Electroplating Baths for Lead-Free Solder Plating
- Properties of Lead-Free Solder Platings
- Lead-Free Solder Bump Formation Using Electroplating Method
- Conclusion

Electrodes of Parts for Lead-Free Soldering

- A Report of the NEDO Project researched by JEIDA (Japan Electronic Industries Development Association) -

Purpose

The Research of the solderability as follows.

Parts with Lead-Contained Plating Lead-Free Solder

Parts with Lead-Free Plating Lead-Free Solder

Parts with Lead-Free Plating Lead-Contained Solder

🖋 Solder

 $Sn-3.5Ag-0.75Bi-(0\sim6)Bi$, Sn-37Pb-2Ag(Reference)

Parts

WHEN 174

SMD(Seramic condenser etc.), Insert Parts, Semiconductor parts(QFP,DIP etc.)

🌽 Platings

Au, Ag, Pd, Sn, Sn-Ag, Sn-Bi, Sn-Cu, Sn-Pb(Reference), etc.

Conclusion

- On the junction reliability, there are no problems on the Parts with Lead-Free Platings.
- There is a probrem between the Parts with Lead-Contained Plating and the Lead-Free Solder containing a lot of Bi
- Lead-Free Plating should be selected from the synthetic viewpoint such as cost, the stability of the quality, etc.

Surface treatment of the Parts

Parts	Plated section	Appearance of the parts
Semiconductor	Outer lead	
Insert parts	Lead	
Chip parts	Electrode	
Substrate	Land ,Pad	Management

Plating of Semiconductor Parts (Outer Lead) for Lead-Free Soldering

Plating of Chip Parts for Lead-Free Soldering

Surface Treatment of Substrate (Pad, Land) for Lead-Free Soldering

Shinshu University

Standard electrode potentials of Metals used as Lead-Free Solder Alloy Plating Materials

Development of Alloy Plating Bath

- Current-Potential Curve -

Current-Potential Curves and the Relationship between Current Density and Composition of Sn-Cu Alloy

- In the Case of a Pyrophosphate Bath -

Effects of Organic Compounds for Surface Morphologies of Electroplating Sn-Cu Alloy Films

Composition of Sn-Cu electroplating bath

-			·	
Compound	Bath 1	Bath 2	Bath 3	Bath 4
K ₄ P ₂ O ₇	1	1	1	1
ΚI	2	2	2	2
$Sn_{2}P_{2}O_{7}$	0.25	0.25	0.25	0.25
$Cu_2P_2O_7$	0.005	0.005	0.005	0.005
PEG600			0.002	0.002
НСНО		0.05		0.05

Surface morphologies of Sn-Cu alloy films ($Cu:1\sim2at\%$)

Shinshu University

Electroplating Baths for Lead-Free Solder Plating

	Electroplating baths	
Sn-Bi	OAlkanesulfonate Bath O Sulfate Bath	
Sn-Ag	O Pyrophosphate-Iodide Bath O Alkaline Bath(5,5-Dimethylhydantoin) O Pyrophosphate-Acetyl Cystein Bath O Gluconate-Iodide Bath O Citrate-Iodide Bath O Alkanesulfonate Bath (+ sulfur compound) O Mercaptoalkanecarboxylic acid Bath O Tartrate Bath O Tris(3-hydroxypropyl)phosphine Bath O Ag particle Composite Bath	
Sn-Cu	 Alkanesulfonate Bath Pyrophosphate Bath Sulfate Bath	
Sn-Zn	O Alkaline Bath O Citrate Bath O Sulfosuccinate Complex Bath O Pyrophosphate Bath	

Electroless Lead-Free Solder Plating

- Electroless Sn-Ag Solder Plating by Displacement Reaction -

Phase Structure of Lead-Free Solder Plating

- Sn-Ag Binary Alloy Electrodeposited from Pyrophosphate-Iodide Bath -

Phase Structure of Lead-Free Solder Plating

Sn-Ag-Cu Ternary Alloy Electrodeposited from Pyrophosphate-Iodide Bath —

- (a) Sn-Ag-Cu ternary alloy phase diagram at 37℃
- (b) Electrodeposited Sn-Ag-Cu ternary alloy composition-phase diagram at room temperature

Shinshu University

Wettability of Lead-Free Solder Plating

- Wetting Balance(Meniscograph) Method -

Wettability of Solder Plating

Solder plating films which are the same type, the same composition and the same thickness often show different wettabilities

Wettability of Sn-10wt%Pb alloy films with 10µm thick from different electroplating baths (Bath 1 and Bath 2).

Shinshu Unversity

Whisker of Lead-Free Solder Plating

In the use of lead-free solder plating such as Sn, Sn-Cu plating, the problem of whisker is important

Mechanism is not clear !!

Standardization of test method is needed.

Standardization Project (NEDO(JEITA) 2001-2003)

Selection of Anode Electrode for Lead-Free Solder Plating

What kind of anode is ideal for the lead-free solder plating?

Sn-Pb alloy is used as a soluble alloy anode for Sn-Pb alloy Solder Plating

Shinshu University

Solder Bumping for Lead-Free Soldering

What kind of lead-free solder is ideal for the solder bump?

Malfunction of Integrated Circuit by α - ray from Radiochemical Impurities in Lead.

Shinshu University

Formation Methods of Solder Bumps

Method	Note
Evaporation method	The batch processing.
Ball Mounting method.	The contrivance of the mounting jig
Soldering paste screen printing process	Contrivance of mask and paste.
Micro Punching Method	For development and trial manufacture.
Ball Bonding Method	For development and trial manufacture
Solder injection Method	For substrate bump formation
Super Solder Method	Substitution deposition of lead on tin particle.
Super Juffit Process	The special adhesion layer on Cu.
Electropiating Matine	Phonorlography
Dimple Plate Method	Silicon wafer with anisotropic etching.
Dip Method	Dipping into Melting Solder
Metal Jet Method	Principle of ink jet printing

Solder Bump Formation Process using Electroplating Method

Sn-Ag Solder Bump Formation using Electroplating Method

Cross Sectional Analysis of Mushroom Type Sn-Ag Solder Bump

Shinshu University

Cross Sectional Analysis of Ball Type Sn-Ag Solder Bump

Shinshu University

Electroplating Sn-Ag Solder Bump Formation under Galvanostatic Mode and Potentiostatic Mode

Galvanostatic Mode

Potentiostaic Mode

Shinshu University

Sn-Cu Solder Bump Formation using Electroplating Method

SEM photographs of mushroom type Sn-Cu bumps

EPMA analysis of mushroom type Sn-Cu bump

Sn-Ag-Cu Solder Bump Formation using Electroplating Method

SEM photographs of mushroom type Sn-Ag-Cu Solder Bumps

EPMA analysis of a mushroom type Sn-Ag-Cu Solder bump

Shinshu University

Cross Sectional Analysis of Ball Type Sn-Ag-Cu Solder Bump

SEM photograph of Ball type Sn-Ag-Cu bumps

EPMA analysis of a ball type Sn-Ag-Cu Solder bump

Conclusion

- In Japan, the lead-free soldering technology has been powerfully advanced, and the surface treatment technology of parts for lead-free soldering has come to a stage of the practical application.
- Sn-Bi plating, Sn-Ag plating, Sn-Cu plating are examined as surface treatment of semiconductor parts (outer lead) at present.
- As a surface treatment of chip parts, Sn plating is regarded as promising.
- As surface treatments of substrate, the followings are examined: Pre-flux processing, electroless Ni/Au plating, electroless Ag plating, etc..
- Lead-free solder bump formation technology using electroplating method has been developed.
- I hope that the lead-free solder plating technology opens up a new global market.