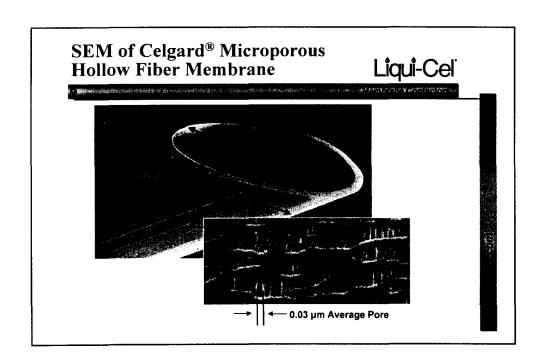
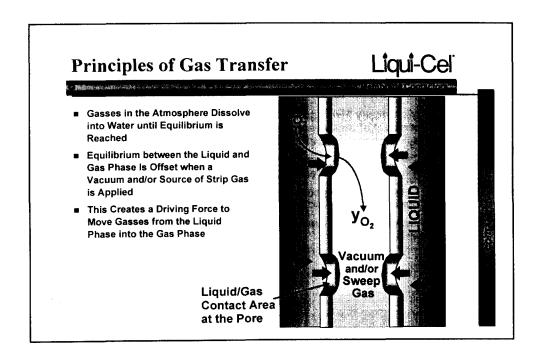
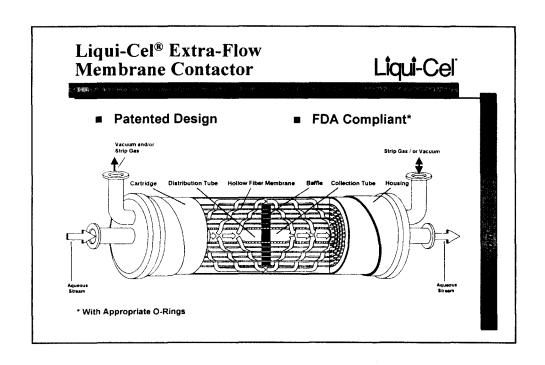
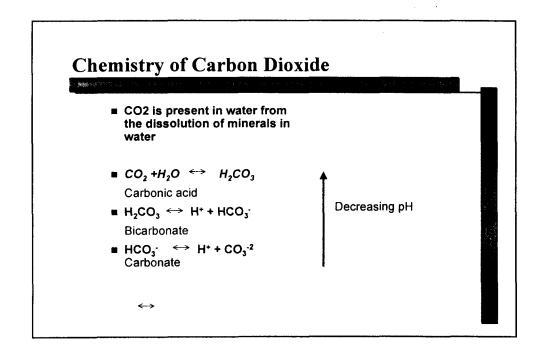
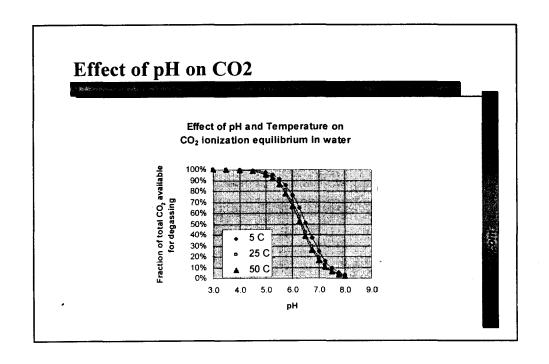

초청강연

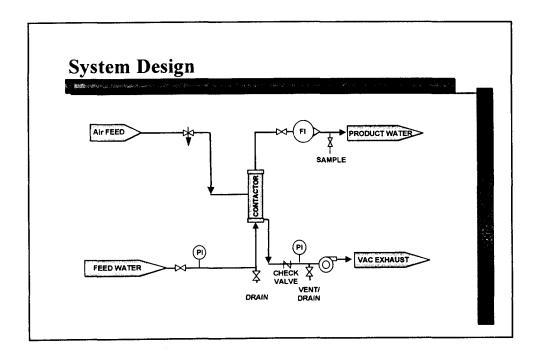

Carbon Dioxide Removal from Water

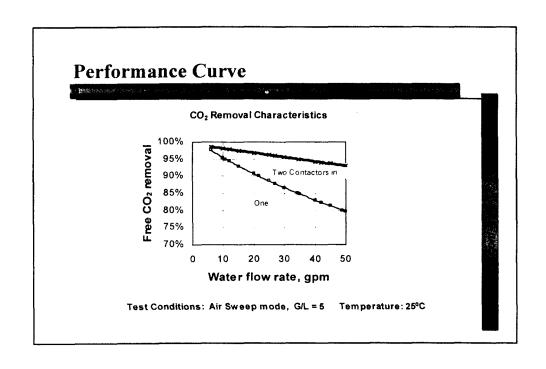

Fred Wiesler (Celgard Inc., U.S.A)




Membrane Contactors


- Historically Membrane Contactors were used for the removal of dissolved oxygen in high purity water systems in the semiconductor industry
- Over the last two years they have been used to remove other dissolved gasses
- They have been proven to be very effective in removing dissolved carbon dioxide from water
- They have been found economical, easy to use and reliable





Field Study

- **■** Municipal water
- Water flow rate 100 gpm (22.7 m3/hr)
- Water Temp 20-25C
- Location
 - Between cation and anion resin tank

Operating costs without CO2 removal

ion Exchange Costs Without CO2 Removal								
Cation			Anion					
Average Run (gal)	210,000	\$225.89	Average Run (gal)	114,000	-			
H2SO4 Regen. level (lb/Ft3)	10.00		NaOH Regen. Level (lb/FT3)	4.00				
Capacity (Kgrains/Ft3)	7.90		Capacity (Kgrains/Ft3)	7.90				
Regen. Water (gal)	16,500	\$17.75	Regen, Water (gal)	20,000	\$29.74			
Volume of IR 120 (Ft3)	168.00		Volume of ASB-1P (Ft3)	228.00				
H2SO4 Needed (ib.)	1,806	\$68.65	NaOH Needed (lb.)	1,824	\$178.39			
Total		\$312.29	Total		\$208.13			
Cost / Thousand Cation \$1,487		\$1,4871	Cost / Thousand Anion		\$1.8257			
Combined cost / 1000		\$3.3128						

Operating costs with CO2 removal

	Ion Exch	nange Cost	s With CO2 Removal		
Cation		Anion			
Average Run (gal)	210,000	\$225.89	Average Run (gal)	230,000	-
H2SO4 Regen. level (lb/Ft3)	10.00		NaOH Regen. Level (lb/FT3)	4.00	
Capacity (Kgrains/Ft3)	7.90		Capacity (Kgrains/Ft3)	7.90	
Regen, Water (gal)	16,500	\$17.75	Regen, Water (gal)	20.000	\$29.74
Volume of IR 120 (Ft3)	168.00		Volume of ASB-1P (Ft3)	228.00	
H2SQ4 Needed (lb.)	1,806	\$68.65	NaOH Needed (lb.)	1.824	\$178.39
Total		\$312.29	Total		\$208.13
		\$1.4871	Cost / Thousand Anion		\$0.9056
	combined c	ost / 1000	\$2.3927		

Total Cost

In this design air is being used to remove the dissolved carbon dioxide. It is drawn into the device using a vacuum pump.

The added operating cost of the vacuum pump is calculated below

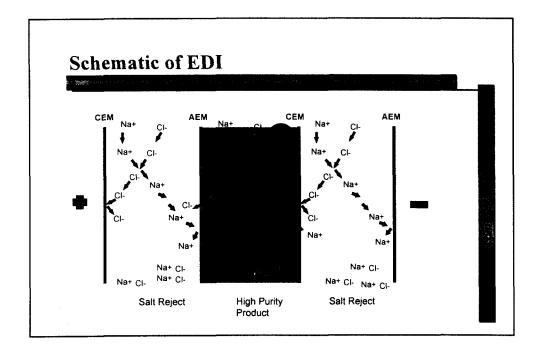
Vacuum Pump Operating Costs				
	80% run time			
Basis	Power Consumed = 3 HP * 24 * 365 * 0.8 * .7457 = 19,600 kW/hr			
	\$0.07 / kW/hr = Yearly power cost = \$1372.00			

Payback

Yearly Usage (gallons)	Carbonated Water	Decarbonated Water	Savings Per Year
12,000,000	\$39,753	\$ 30,084	\$9,669

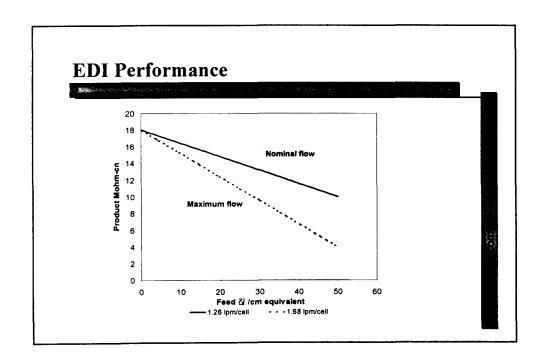
- Compete 100 gpm (22.7 m3/hr) system with membranes, vacuum pump, piping and frame estimated cost < \$12,000
- Payback < 1.25 years

Features and Benefits


- Modular.
 - System can be shipped to customer and guickly installed
- Low capital and operating cost
 - Fast payback
- Low maintenance
 - Easy to use and does not require operator attention
- Chemical Free operation
 - Good for the environment no chemical storage or handling required
- Gas exchange takes place across the membrane
 - No chance of gas contaminating the water
- Responsive to flow changes
 - System can be cycled on and off without any problems

Evolution of Water System

- Pretreatment Cation/ Anion mixed bed
- Pretreatment RO Mixed Bed
- Pretreatment RO EDI


EDI Technology

- •Uses conventional ion exchange resin sandwiched between two membranes
- ·Membranes are cation or anion specific
- •An electrical current is applied across the sandwich
- •The electrical current creates a driving forces to continuously removed from the ions from the resin.

EDI Feed Water Conductivity

- The outlet resistivity of an EDI unit is proportional to the inlet resistivity.
- 1.0 ppm CO2 has an equivalent conductance of 2.66 uS/cm
- By removing the carbon dioxide we can lower in the inlet conductivity of the water. This will increase the outlet conductivity

Conclusions

- New membranes and contactor designs have expanded the market for membrane contactors
- Membranes contactors can be used to extend the life of anion exchange resin
- membrane contactors can be used to improve the performance of EDI