액체운반용 유기금속화학증착법으로 제조된 SBT박막의 씨앗층에의한 강유전특성의 향상

Improvement in Ferroelectric Properties of SrBi₂Ta₂O₉ Thin Films with seed Layer by Liquid Delivery Metal-Organic Chemical Vapor Deposition

Woong-Chul Shin and Soon-Gil Yoon

Department of Materials Engineering, Chungnam National University, Daeduk Science Town, Taejon, 305-764, Korea

Ferroelectric SrBi₂Ta₂O₉ thin films were deposited on the Bi₂O₃ buffered Pt/Ti/SiO₂/Si substrates using Liquid-Delivery Metalorganic Chemical Vapor Deposition technique. A thin Bi₂O₃ buffer layer with the thickness of 7 nm was used to further decrease the annealing temperature and increases the remanent polarization of SBT thin films. The SBT thin films deposited on Pt/Ti/SiO₂/Si substrate at 540°C were not crystallized, however, the SBT films with Bi₂O₃ buffer layer were well crystallized at deposition temperature of 540°C, and with increasing annealing temperature, the SBT thin films showed stronger (115) orientation than those without Bi₂O₃ buffer layer. The Bi₂O₃ buffer layer plays an important role as a seeding layer, and we found that the Bi₂O₃ buffer layers affect the crystallinity of SBT thin films. The value of the remanent polarization of SBT films with Bi₂O₃ buffer layer was improved significantly in comparison with those for the films without Bi₂O₃ buffer layer. The remanent polarization(2Pr) of SBT films without and with Bi₂O₃ buffer layer annealed at 750°C were 14.7 and 22.5 μ C/cm² at an applied voltage of 5 V, respectively.