산화 루테늄 박막을 이용한 마이크로 슈퍼캐패시터의 제작 및 특성평가

Fabrication and characterization of electrochemical capacitor using a ruthenium oxide thin film electrodes

임재홍^{a and b}, 최두진^b, 김한기^a, 전은정^a, 조원일^a, 윤영수^a ^a 한국 과학기술 연구원 박막기술 연구센터 & 연료 전지 센터
^b 연세대학교 세라믹공학과

An all solid-state thin film electrochemical capacitor was fabricated with an amorphous and crystalline ruthenium oxide (RuO₂) thin film electrodes and an amorphous Li_xPO_yN_z (Lipon) thin film electrolyte. Crystalline structure and stoichiometry of RuO₂ thin film is dependent on partial oxygen pressure during sputtering. Deposited RuO₂ thin films have excess oxygen. The effects of crystalline structure and stoichiometry on the electrochemical behavior of the RuO₂/Lipon/RuO₂/Pt TFSC was characterized by a charge-discharge technique in the potential range of 0-2V. The capacity fade of electrochemical capacitor with amorphous RuO₂ thin film (Fig. 1) was larger and faster than with RuO₂ thin film. The reason is that the reaction of excess oxygen ions with Li ions in amorphous RuO₂ film during charging and discharging process is large compared to crystalline RuO₂ film due to excesses in free energy and volume. The reason of capacity fade was versified by AES and GAXRD(glancing angle x-ray diffraction).

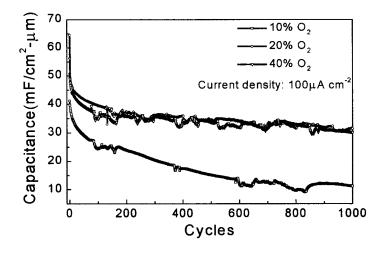


Fig. 1.