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Three Dimensional Dynamic Interaction of Foundations on Layered
Half-Space
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ABSTRACT

A dynamic interaction analysis of an adjacent surface foundation on a layered half-space is performed in the
frequency domain. A semi-analytical approach is employed to reduce the integration range of the wavenumber
in the surface fundamental solution for a layered half-space in boundary element (BE) formulations. The
present study then adopts a combined boundary and finite element method to analyze the dynamic behavior of a
system of flexible surface foundations on an elastic homogeneous and layered half-space. Numerical examples

are presented to demonstrate the accuracy of the developed method. The examples show the feasibility of an

extended application for the complicated dynamic interaction of foundations on layered media.

1. INTRODUCTION

Recently, the soil-structure interaction plays a fundamental role in the analysis and design of structures
subjected to dynamic excitation. Dealing with adjacent structures or supports, the dynamic-interaction through
the soil media might also be important for the responses of practical problems. Since Warburton et al.!"! studied
the problem of cross-interaction between two circular rigid foundations problem, many researches have been
investigated dynamic-interaction problems. Iguchi and Luco® have obtained the dynamic responses of a
square flexible foundation. Qian et al.®”) proposed a boundary element method in combination with the finite
element method for a flexible foundation to study the cross-interaction.

in this study, dynamic interaction between foundations on layered half-space is performed. The adoption of
a coupling method that combines finite element for the foundations and boundary element for layered half-space
makes it feasible. Particularly, boundary element that accounts for the layered half-space is possible by
expanding the two-dimensional fundamental solutions! to three-dimensional fundamental solutions. The

numerical integration algorithm using the semi-analytical methods over wavenumber in the frequency domain is
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employed because the solutions do not have analytic forms. In order to verify the accuracy of previously
described fundamental solution response of rigid circular foundation is analyzed. Then the dynamic response
of two identical flexible square foundation resting on the layered half-space is examined to demonstrate the

capability of the developed method.

2. BOUNDARY ELEMENT FORMULATION

When the finite portion (I 1) of soil is occupied by a surface foundation, the equilibrium conditions and the

compatibility conditions for the displacements are imposed over the foundation surface. Since the horizontal
flat surface is stress free, the traction Green’s functions automatically vanish on I ¢ and the boundary integral

equation reduces as”

CEW.E 0)= [ TE.mn)U, €, 0l  ; Gk =123) Q)

where § =(£,,£,,0), x=(x,,0) represent the source point and the observation point located on the traction
free surface and U, ; is Fourier transformed fundamental solution with transformed displacement and traction
terms U, and T,. The coefficient C(§) is defined with domain. Using BEM formulation for the equation

(1), the surface I', is discretized into NE subregions F} (j=12,..,NE), and using quadratic shape

functions at each element, Eq. (1) is transformed into a system of linear algebraic equations

NE
U, = ). T'U} ; Lk =123) )
=1
with
Ui =[,Uso|J |dndn, 3)

here, ® =[g @, ... ¢,] is the matrix of quadratic shape function in the local coordinates (,m,) and |J|
is the Jacobian of the transformation between global and local systems. Also, p is the index for the each
element of surface elements. The value U k Tepresents the k -th component of the displacement of the

D -th element, and 7/ represents the i-th component of the surface traction in the J -th surface element.

equation (2) can be conveniently written in a matrix form as

™} = [6lir} @
where the matrix [G] with dimension 3NE x3NE represents the force-displacement relationship between the

elements of I” ; and is called the compliance matrix for the flat surface I’ P2
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For the three dimensional fundamental solution in layered half-space, owing to the complex behavior of the
integrands involve, a direct evaluation of the improper integrals is difficult both analytically and numerically.
The situation is further complicated by the expected singular behavior of some of the Green’s functions in the
layer containing the source. To deal with such problems, it is useful to employ the method of asymptotic
decomposition!® wherein the leading asymptotic expansions of the featured integrands (responsible for singular
behavior) are extracted and integrated analytically so that the remaining parts with strong decay can be evaluated

numerically. Mathematically, one may write

ar =(@r), +(@r), )

where the subscripts 4 and N denote the analytically and numerically evaluated parts of the fundamental

solutions and the subscript / and p mean the response and source direction.

3. COMBINATION OF BEM AND FEM

On the assumption that no slippage or separation occurs at the soil-structure interface, the conditions of nodal
force equilibrium and nodal displacement compatibility can be used to match the two independently modeled
substructures. The total number of boundary elements used in the problem using shape function can be written

in the following form®

{u}={u")=[N}u"} ®
{r}=IMp} M

where {u”’f } and {r } are the displacement vector and traction vector of the boundary element substructure.
{u rE } and {P, } are the displacement vector and nodal reaction force vector of the finite element substructure.

In modeling the foundation structure, the plate element, which has five degrees of freedom at each node, is used.

Therefore, the matrix [¥] is introduced to match the different degrees of freedom between boundary element

and finite element. Considering the applied nodal force on the structure and displacement equilibrium

requirements dictate that

P,+P =P, 8)
so that
(%] (u}+ INFIGT VK w } = (P} )

where, [f] is the modified stiffness of the finite element substructure correspond of the plate elements. If

equation (9) is arranged about the displacement vector { u } as follows, then;
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{u }=[ K]+ V][] V] (2. ) = [sKE. ). a0

Therefore, the relationship between external forces and nodal displacements is established.
4. VERIFICATION

In order to demonstrate the validity of developed procedure following example is shown. The dynamic
response of two identical square foundations of side 2g and thickness /4 resting on the half-space with a

Poisson’s ratio v, =1/3 is considered in this section. The two foundations are placed side by side a center to
center distance d. The Poisson’s ratio for the foundation is v ;=030. A 6x6 element and 10-layer

discretization is employed for both the source foundation, which is subjected to an external excitation force, and
the secondary foundation which is load-free. Four values of relative rigidity are considered with

E =Eh/12Ea’ , where E, is Young’s modulus of foundation and E, is that of half-space:
E =00LE,=0.02FE,=0.15E,=175. The vertical compliance function C,, for the active foundation
under a central point load P is shown in Figure 8, where, C, =aE W/ 2P(1+v_‘) and dimensioniess

frequency a, =wa/C,.
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Figure 2 Vertical compliance at d/a=5.0
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The interaction will generate contact forces as well as displacements on the secondary foundation. The
compliance functions at the center point of the secondary foundation are given in Figure 1 and 2- for the
dimensionless separation distance d/a =2.5,5.0 respectively. First, the results obtained from this study
closely agree with results by Qian et al® in d/a=25 and E, =0.01 condition. In addition, it has been

shown that the amplitude of the coupling compliance function decreases with increasing separation distance d.

For relatively rigid foundations, it decays rapidly at higher frequency.

5. DYNAMIC INTERACTION BETWEEN TWO FLEXIBLE FOUNDATIONS

The developed method is applied to the dynamic problems of two identical square foundations, shown in
Figure 3. The dimensions of the square foundation are a for sides and / (0.3m ) for thickness resting on the

layered half-space. The two foundations are placed side by side with a center-to-center distance d. Details
of material properties are presented in Table 1.

Thirty-six square elements are employed for both active and passive foundations, which have an external

excitation force, and a receiver point without any applied load, respectively. The vertical compliance C,, at

the receive point under a unit harmonic point load P on the active foundation is shown in Figure 4 and 5,

where C,, =aE W /2P(1+v,) and dimensionless frequency a, =wa/C,.

Point load

Source foungg

Figure 3 Two square foundations on a layered media

Table 1 Material properties of layered media

Young’s Modulus Densi Poisson’
Prop. 2 ty oisson’s . .
Layer P (kN/m?) (kg/m’) Ratio Damping Ratio
! 1.0 x 10°
Esi 1.0 x 10°
2. 0’ 0.333 0.0
2 Es, 2.0 x 10° 0x1 5
Ess 5.0 x 10°
Foundation Eg 23.8 % 10° 23 % 10° 0.167 0.00
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Figure 4 Vertical compliance at d/H =2.0
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Figure 5 Vertical compliance at d/ H =4.0

In Figure 4 and 5, the vertical compliance at two relative values of center-to-center distance versus layer depth
(d/H=20, 40) for the H=4m and ‘a=4m is shown. As the results from the responses of two
foundations on homogeneous half-space, it has been shown that the amhlitude of the coupling compliance
function decreases with increasing separation distance d in an oscillatory pattern. Also, more frequent
oscillation is appeared in d/H =4.0 than in d/H =2.0. Not to same as that of homogeneous case,
however, the apparent decay phenomena is not appeared at higher frequency for relatively rigid foundations,
which caused by the reflection of sub layer. The sublayer’s stiffness ratio variances affect more to the results of
d/H =2.0 than those of d/H =4.0. As in Figure 4 and 5, the compliance of the center point decreases
signiﬁéantly with increasing stiffﬁess ratio (E,/E,) in d/H =20 but the decreasing magnitudes of
compliance are relatively small in d/H =4.0. In half-space, the radiation characteristic of radial direction
induces a significant reduction of response and there is enough radiation in d/H =4.0 reduction, so the
increasing stiffness ratio ( E, / E,) affect little for the compliance. It means that the separation distance of

foundations is more important than the stiffness increase of subsoil for preventing vibration.

. In order to represent the response of the structure in time variance, the inversion of the FFT is used. When
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the time function A(f) is divided in M piecewise constant segments whose heights are 4 and base

AT =T/ M , the equation (11) shows how the inversion of FFT is obtained!”.

1'& i 1 i2ammi N
h, =h(t,)~ T H e*i®n =—fZH"e“ (11a)
=0 n=0
Ml M
H" — H(lUm) ~ ATZ hme—nm,.l.. =ATZ hme—lbmm/N (11b)
m=0 m=0

Where both m and » range from 0 to M —1. After these inversions of the FFT, the response of the
center point on the structure is represented as a time history in Figure 6. The reflection effects are also
represented in a disturbance of responses in time domain which are transformed by inverse FFT. As in Figure 5,
the sublayer causes disturbed responses which are induced by the high frequency component, and these are

different to the results of homogeneous case ( E,/E, =1.0). As indicated in Figure 7, the maximum

compliance reduces consistently as E,/E, become higher but the separation distance is more critical to the

responses.
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5. CONCLUSIONS

An dynamic interaction of a foundation on a layered half-space is performed in the frequency domain. The
foundation is modeled by finite elements and the layered half-space is modeled by boundary elements based on
the surface fundamental solutions of the layered half-space using a semi-analytical approach. Numerical
examples are given to demonstrate the feasibility of the presented method.

As a result of application of this method to the dynamic interaction between two flexible surface foundations,
it was found that the separation distance of foundations is more important than the stiffness increase of subsoil.
The amplitude of the coupling compliance decreases with increasing separation distance d. In addition,
sublayer’s stiffness ratio variance affects more to the results of d/H =2.0 than those of d/H =4.0. The

compliance of the center point decreases significantly with increasing stiffness ratio (E,/ E,) in near separation

distance but the decreasing magnitudes of compliance are relatively small in far separation distance.
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