Level-based Data Mining System for Generalized Association Rules

일반화된 연관규칙 발견을 위한 Level-based Data Mining 시스템

  • 김온실 (이화여자대학교 컴퓨터학과) ;
  • 박승수 (이화여자대학교 컴퓨터학과)
  • Published : 2001.10.01

Abstract

데이터로부터 숨겨진 패턴을 추출하는 데이터마이닝 기법 중에서 연관규칙은 대용량의 데이터베이스에서 단위 트랜잭션 당 동시에 발생할 확률이 높은 항목들의 유형을 발견하는 기법이다. 연관규칙 탐사에서 개념계층(taxonomy)을 사용하여 보다 포괄적인 의미를 갖는 규칙을 찾아내는 연구가 일반화된 연관규칙이며 이를 통해 일반화 이전에는 간과될 수 있는 중요한 규칙을 발견할 수 있다. 일반화된 연관규칙에 관한 기존의 접근방법은 후보항목집합의 각 항목에 대한 개념계층상의 모든 조상들을 트랜잭션에 추가한 후 확장된 트랜잭션에 대해 지지도를 계산하는 방법이며. 이렇게 되면 연관규칙의 단점중의 하나인 계산량 문제가 더욱 두드러지게 된다. 이에 본 연구에서는 모든 개념계층 레벨이 아닌, 사용자가 관심 있는 레벨로 제한된 환경에서 연관규칙 탐사를 수행하여 규칙생성의 복잡도를 줄이는 시스템을 구현하였다. 그러나 모든 항목을 한 레벨로 일반화하는데는 무리가 따르기 때문에 관심있는 항목의 경우 일반화 레벨을 따로 명시할 수 있도록 하여 사용자가 원하는 규칙을 발견하도록 하였다.

Keywords