A Construction Method of Expert Systems in an Integrated Environment

Hui Chen

Center for Information Science, Kokushikan University
4-28-1 Setagaya, Setagaya-ku, Tokyo, 154-8515, Japan
Tel: +81-3-5481-3220, Fax: +81-3-5481-3227, E-mail: chen@kokushikan.ac.jp

Abstract

This paper introduces a method of constructing expert
systems in an integrated environment for automatic
software design. This integrated environment may be
applicable from top-level system architecture design, data
flow diagram design down to flow chart and coding. The
system is integrated with three CASE tools, FSD
(Functional Structure Diagram), DFD (Data Flow
Diagram) and structured chart PAD (Problem Analysis
Diagram), and respective expert systems with automatic
design capability by reusing past design. The construction
way of these expert systems is based on systematic
acquisition of design knowledge stemmed from a systematic
design work process of well-matured developers. The
design knowledge is automatically acquired from respective
documents and stored in the respective knowledge bases. By
reusing it, a similar software system may be designed
automatically. In order to develop these expert systems in a
short period, these design knowledge is expressed by the
unified frame structure, functions of the expert system units
are partitioned mono-functions and then standardized
components. As a result, the design cost of an expert system
can be reduced to standard work procedures. Another
feature of this paper is to introduce the integrated
environment for automatic software design. This system
features an essentially zero start-up cost for automatic
design resulting in substantial saving of design man-hours
in the design life cycle, and the expected increase in
software productivity after enough design experiences are
accumulated.

Keywords:

Expert system; design knowledge; Standardization;
Automatic software design; Intelligent CASE tool

1. Introduction

The software industry has been facing increasing demand
for software, and automatic design has been regarded as the
final solution [8]. But the penetration to the industry is very
slow. One reason for this might be that only 100% fully
automatic designs have been considered and cost effective
partial automatic design share not yet been introduced. The

-211-

second seems to be the fact that the start-cost as well as the
development cost for a highly automated design system is
quite large. Our policy is to enable a cost effective but not
complete automatic design system, in a bottom up manner.
The first system, named Intelligent CASE tool (2]
automates programming phase by reusing past designs in
structured charts. It has evolved to Integrated Intelligent
CASE tool [3] that widens the application upward to data
flow design prior to programming. We have been
developing an Integrated Environment putting emphasis on
the architecture that enables standardized design process
applicable from earlier phase systems design down to
coding. These intelligent tools are consisted of some
commercial drawing tools and expert systems, so a main
problem of developing them is how to reduce development
cost and construct these expert systems rapidly.

This paper introduces a method of constructing the
expert systems in an integrated environment for automatic
software design. The way is based on systematic acquisition
of design knowledge stemmed from a systematic design
work process of well-matured software development
organizations. The design knowledge is expressed by the
unified frame structure, so the design knowledge is easily
automatically acquired from respective documents.
Functions of the expert system units are partitioned
mono-functions and then standardized components. Design

. is a transformation from the input to the output, and there is

a main data flow. Is resembles a distributed control system
which corresponds to a hierarchy agents as Minsky pointed
out [9]. This type of expert systems should be structured
hierarchically. As a result of systematic knowledge
expressed by data flow and control flow, the design of
expert systems is reduced to the same procedure for
ordinary software design. Another feature of this paper is to
introduce the integrated environment for automatic
software design. It may be applicable from top-level system
architecture design, data flow diagram design down to flow
chart and coding.

2. Basic Assumption

This automatic design method may be regarded as a reuse
of design documents in fragments from the viewpoint of

Original design work process

I |
Specification] Program Coding /I
design design

EC e

D

o

[

Dataflow D
design o
C.

Design Design

knowledge knowledge

Reproduced design knowledge

[Knowledge Base J

I
[I

|
D Spec. design /l Prog. design| Coding
° knowledge konwledge knowledge
C.

DFD design /I FLC design /“
knowledge knowledge

ﬂl 161:\(/)e1 ﬁ“ lellerel ﬂj‘ 1§;e1 ﬁl
e @ @ sl

i

Figure I - Hierarchical design work process and the reproduced design knowledge

conventional Software Engineering. As the target expert
for the design, an excellent software development
organization with high maturity is taken. Their high
maturity has been attained by accumulating experiences in
each field and making improvements successively for more
than ten years [5]. As a result, they have not only excellent
technical knowledge but also a highly, uniform and solid
process featuring correct expression.

The development starts with experienced Systems
Engineers, who design a product specification considering
their standardized functions. Then the system is designed
by hierarchical functional teams, following their
standardized architecture. Their work is also highly
standardized due to specialization. This constitutes the
expert model. They take a hierarchical work process as
shown on the left of Figure 1{1,7], which is intersected by
the hierarchical documents. As the work process intersected
by documents is design process knowledge, the hierarchical
work process is taken as the knowledge model.

The bottom left of Figure 1 shows the systematic
acquisition of the lowest level design knowledge from
documents. When design charts are left at each small step
of a design, a concept (e.g. symbol) in a preceding
document is hierarchically detailed into several pieces (e.g.
symbol) of lower level concepts in the output documents.
This hierarchical decomposition is the elementary design
process knowledge, and is called @ design rule. From the
adjacent two documents, design rule may be acquired,
systematically, reliably, and easily. Similarly to this, other
design knowledge may also be systematically acquired
from various documents [1,7]. The right of Figure 1 depicts
thus reproduced design knowledge. Connecting these
design rules from the initial concept up to the source code,
they form a huge hierarchically expanding semantic
network. An expert system with a knowledge base storing

-212-

these design rules behaves like an apprentice working
quickly at a skill level. For this system, this is taken as the
basic principle for automatic design.

3. Construction of an Expert System

3.1 Design knowledge

As aas been pointed out in Figure 1, a design consists of
various hierarchical detailing. Figure 2 shows major three
documents of the system with their intelligent processing, a
Funcrion Structure Diagram (FSD), a Data Flow Diagram
(DFD), and a Problem Analysis Diagram (PAD is a kind of
structured flow chart). In the top center column, a
functional module M is hierarchically detailed to lower
level functional modules M/~3. Each of M’s consists of
several hierarchical detailing of functions. In the middle
DFD and in the bottom PAD, a hierarchical detailing of
function and the control is shown respectively. Each
hierarchical detailing shows that a concept (e.g. symbol) in
a preceding stage is hierarchically detailed into several
pieces (e.g. symbols) of next level concept.

As is well known in Cognitive Science and Psychology,
such hierarchical relations are the most fundamental
elementary human knowledge. In another word, a design is
a process forming a semantic network from a targeted
concept to elementary logical or arithmetic operations
denoted by a programming language statement. Thus, these
hierarchical relationships are chosen to be the elementary
design knowledge.

Thus a hierarchically expanding relationship of human
concept consisting of a parent and the children is
elementary design knowledge, and named a design rule.
When they are cascaded, a hierarchically expanding
network reaches to source code. In Figure 2, those are as

follows:
1. FSD design rule

In the top center column diagram, M is a parent
and M1~M3 are children, and M to M1~M3
relation is called a FSD design rule.

2. DFD design rule

In the middle center column of Figure 2 shows a
pair of DFD, where a lozenge denotes data and a
square denotes a function. A unit DFD (DJ-F[-D2)
as a parent is detailed to another DFD
(D11-F11-D12-F12-D13) as the child. Such a
parent-to-children relationship is called a DFD
design rule. This case is a design rule which the
parent's input-output data and the children's
input-output data keep coincidence. For the
automatic acquisition from DFD, a dotted arrow
line shows the correspondence.

3. PAD design rule

The bottom center column of Figure 2 shows a
PAD. In this figure, a parent concept, F2 symbo}
connected to several children symbols (F2/...F24)
located to the right corresponds to a PAD design
rule.

One or several symbols in the input design diagram are
hierarchically detailed to several symbols to be drawn in the
design output diagram. An expert system has to do this type
of detailing using design rules stored in it. In order to unify
representation of the unit symbols, a super set symbol to
represent all symbols has been chosen.

3.2 Standardization of data structure

As the design system transforms the input specification to
the designed output, the input specification file requires a
different structure for the output file. In a large design
system, several different file structures become necessary.
In such a case, a master file, a super set file structure, is
taken to embody all the information. The standardization of
data in hierarchical structure results in hierarchical
structures of the internal data, resulting in a hierarchical
structure of the design system, and the mono-functional
structure enables simple design processes for the design of
the design system, which may be easily standardized.

Figure 2 shows super set symbols for three diagrams: FSD,
DFD, and PAD. The center column shows a design rule for
each diagram, hierarchical expansion from an input to the
output. The right side column shows unified representations
for each case respectively. Rules for unified representations
are as follows:

1. Elementary symbols in diagrams are listed upward.

2. Each design process expands design information
hierarchically. The relationship between design
process input and output is expressed by the terms
of parent and child for each symbol.

3. In a design document, the symbols are lined to
form a string to show the flow of information in a
DFD, or PAD. These strings of the symbols in
their original diagram are shown by input
connection and output connection for each symbol.
In the case where plural inputs or outputs exist, a
serial number is added like input connection 1.

Diagram type Hierarchical expansion

Representation of unit symbols

[:M Par«int
Function I
Structure geesmmmmmmmmmoclecooooooos
Diagram
I Ml I I M2 l I Child 1-==-= Child n
Parent

/D1 /| F1 |/ D2/ Input | Output

L Saae connection 1 connection 1
Data flow L e i E
Diagram /i1 Z»[Fii}»/ D12 f»[Fi2 -9/ D3/ Inpit 1 Output

connection n I l connection n
Child 1 ====- Child n

F1 I ed B3

Problem Analysis

Input connection

F22
| 72]

h Condition

Diagram

F23a Parent ¢

F23b

Child 1
1]

1
Child n
Output connection

II \‘\\ ZH

Figure 2 - Unified representation of design knowledge

-213-

Graphic representation
for a design rule

Frame for a design rule

Input pattern Qutput pattern N1_1
__’ -
N1 <
NI 1 symbol_name Obtain work time
Obtain symbol_name Make salary table symbol_type . process
Work time | parent_node N1
symbol_type process -
parent_node null connect_up null
N1 N1_2 connect_up null connect_down NI1_2
Make Obtain connect_down null chitd] null
salary gross child] NI-1
table salary N1_2
child2 N1-2 1P
N1_3 child3 N1-3 symbol_name Obtain gross salary
Pay tax childd Ni-4 symbol_type process
candidacy nod Cl L parent_node NI
N1_4 connect_up NI1_1
connect_down N1_3
Obtain childl null
net salarv

Figure 3 - An example of frame for a design rule

By the above rules, all symbols of several types of diagrams
can be expressed uniformly. The design information is
expressed by frames for knowledge processing. Figure 3
shows an example of frame for a design rule. The left part
shows the graphic representation for a design rule, a
hierarchical expansion from an input to the output. The
right part shows the structure of such frames for the design
rule and unified representations for each symbol. These
unified unit symbols can be easily converted to frame
representations. Thus all the design information in the
system takes the same representation framework and design
rules are also expressed by the same frame structure. The
unified frame representation results in a standardization of
both design information, design rules, and makes each
processing easy to be standardized. This standardization
over various types of documents enables that a structure of
frame, acting as an inference engine, is commonly used for
various documents such as PAD, DFD, and FSD.

3.3 Principle of design knowledge acquisition

The automatic acquisition of the design knowledge is
attained by extracting a design rule that is a pair of the
parent concept and its children. Here, a case of PAD’s
design knowledge acquisition is explained. In the bottom
left of Figure 4, PAD, and a dotted line trace is shown. It is
performed by a tree-walk program. It uses three types of
symbols: processing: a square symbol in concatenation;
selection: a wedged symbol and repetition: a square symbol

-214-

with one vertical line. In each symbol, a natural language
statement, or a part of a source code, must be written.
Visualization of the program structure may be easy coding.
In the leftmost side, the initial concept is hierarchically
detailed to a group of children in the right side. As the
initial concept is detailed, the PAD grows to the right as the
tree grows.

FSD

M FsD KB
] [(v] [v] i j
DFD

[T Y, /%7
e DFD KB

o
3
o
’:.
w

Figure 4 - Acquisition of design knowledge

-y
wn
<
i
—=1TJuJ

Symbol Data

Symbol Relation

Table Table

Graphic Infomation
Table

Figure 5 — A structure of knowledge bases

The program first acquires the type of symbol
(processing) of the first symbol, the statement in it {(parent
concept), and the symbol position, and then repeats this for
others until it returns to the starting point. From the
acquired information, a design rule (parent = childl..
child4) may be derived, and stored in PAD Knowledge
Base. A major tree walk program, together with this local
tree walk program, enables the automatic acquisition of
design rules on the whole tree of PAD.

3.4 Structure of knowledge base

The Knowledge Base consists of a group of domain
knowledge for program modules where commonality of
natural language expressions of the design rules and
integrity of resources and major variables are kept.
The Figure 5 shows a structure of the domain knowledge
bases. Each domain knowledge base consists of three tables,
which are called Graphic Information Table, Symbol Data
Table and Symbol Relation Table. Each symbol of various
documents includes graphic information and design
mformation. Graphic information of each symbol (e.g.
symbol name, symbol kind, symbol position, etc.) 1s
recorded in the Symbol Tuble. The graphic information of a
symbol acquired by the local tree walk program is analyzed,
and a design rule (c.g. a relation of parent and child(ren)) is
created and recorded in Symbol Relation Table. Symbol
Relation Table includes each tree structure of the design
knowledge. To recover a design rule quickly, each symbol
related information (e.g. position of design rule, position of
graphic information) is recorded in a Symbol Data Table.
By this structure of the knowledge base, the design

-215-

knowledge may be quickly accessed, easily added, deleted
and modified. When these tables are defined and made,
constitution or expansion of a new domain knowledge base
becomes very easily.

3.5 Principle of function design

In any kinds of software design, there appears a hierarchical
structure. In the top managerial level, it is called
“hierarchical decomposition of object’. The design of
software system comes next, starting with the specification.
It is a hierarchical decomposition such as subsystems,
modules, fanctions and so on, and during these the design
information is detailed hierarchically and then standardized.
Procedures for the standardization of function are as
follows:

1. As a principle of Myers’ STS division [9], a data
flow is partitioned to mono-functional elements
along the data flow. This is detailing in the
horizontal direction.

2. As a principle of Jackson’ programming [6], the
gained mono-functional elements are decomposed
hierarchically by small step in the vertical
direction.

3. These hierarchical detailing of functional elements
must be performed along with the hierarchical
detailing of data.

4. The decomposition of the algorithm is shown by
DFD. After the decomposition, the algorithm is

converted to a processing sequence, and the results
may be shown by structured chart PAD. And so
each design is done using by a pair of DFD and
PAD.

When this procedure is repeatedly applied, a hierarchical
function structure may be obtained. This process may be
applicable from initial systems design phase down to
programming phase. By this standardized work process, the
same automatic design may be applicable from the high
level design down to coding.

Based on the above-mentioned principle of software
design, a standardized way of design process becomes
possible. Figure 6 shows the idea of standardizing a design
process. It decomposes an input function (Func.) to several
lower level functions (Funcl., 2, 3), which is a universal
principle from system design phase to the detailed design
phase. The middle level boxes in the Figure 6 shows the
inside of the decomposition process. The decomposition of
the algorithm is shown by DFD clearly. After the
decomposition, the algorithm is converted to a processing
sequence, and the results may be shown best by structured
chart PAD.

" By repeating a paired design process of functional
decomposition by DFD then converting the algorithm to a
control sequence by structured chart to the right side middle
in Figure 6, the decomposition forward to the source code.
This process may be applicable from initial systems design
phase down to programming phase. When thus
standardized, the same set of documents (DFD and PAD)
may be used throughout all the design. This may be applied
from top system level, then each functional unit, and finally
down to each program module. By this standardized work
process, the same automatic design may be applicable from
the top-level design down to coding.

; Structured Chert (PAD)
| il |G
™ [d
‘ €
— L

Figure 6 - An example of standard design documents

1t should be noted that only one set of design knowledge
for hierarchical decomposition and some control is enough
for handling two types of design documents, DFD and
structured chart. This minimization of required design

-216-

knowledge is a vital key for enabling automatic design. At
present, Integrated Intelligent CASE tool bases on reusing
original human design. For a human designer, two step
procedure of functional decomposition using DFD showing
data first then adding control on structured chart is easier
than doing the same using only structured chart. The
effectiveness may be proved by a fact that some structured
chart is used in combination with data notation.

When thus standardized, the same set of documents may
be used. This may be applied from top system level, then
each expert unit, and finally down to each frame. Thus
design work process is reduced to a set of simple
elementary procedures. This shows that a design of an
expert system has been reduced to standard work
procedures similar to design of software.

4. Overview of an Integrated Environment
System

Integrated Environment system has been implemented in
Windows. Visio [10], a commercial dedicated drawing
system, is used for implementing FSD, DFD and PAD
CASE tools. Graphical symbols in Visio are called shapes
and they have a wide range of the property. Visio enables to
construct CASE tools easily by the shapes following to ISO
standard as well as the drawing environment. Displays may
be achieved by various operating shapes and their
properties. For knowledge acquisition and automatic design
operations these graphics are hidden and programmers can
design without thinking only FSD or DFD or PAD. The
other intelligent tasks, conversion of graphical information,
knowledge acquisition, automatic design, integration and
control, are performed by Integrated Intelligent subsystem.
A view of the system is shown in Figure 7. The typical
combined design operation is as follows:

1. Each function is detailed to several lower level
DFD’s using the DFD CASE tool. All the function
and data symbols bear a natural language concept.
After the design completes, the corresponding PAD
may be drawn automatically from the DFD, and
some necessary control function, such as decision
and repetition, must be added if necessary.
Integration unit performs to generate these pieces of
information for PAD.

2. A FSD CASE tool for Function Structure Diagram
is provided. It shows the functional structure of a
system in a hierarchical functional structure diagram.
Two paired diagrams of DFD and PAD for a
function is registered on a function symbol in the
FSD. When a function symbol is specified on FSD
display, a pair of DFD and PAD is displayed on the
respective displays. Using these diagrams and tools,
a standardized way of design from early phase down
to coding becomes possible. But the unique way is
to acquire automatically reusable design knowledge
from documents, then detail automatically by
reusing the design knowledge.

3. As the present system reuses design knowledge in

previous designs, a designer has to design a matched
pair of sketches of DFD and PAD for each small
step of design. In order to eliminate these designers’
labor, reduce mistakes and keep coincidence with
DFD and PAD, the integration unit is provided.

For knowledge acquisition, human designed paired
diagrams are sent to the expert system and the
integration unit checks the consistency of DFD and
PAD for each small step design. The design
knowledge is automatically acquired from respective
documents and stored in respective knowledge
bases.)

For automatic design of DFD and PAD, a designer
draws an initial design sketch of a DFD using DFD
CASE tool, then the corresponding PAD may be
generated and displayed on the PAD display. When
automatic design is commanded, a DFD pattern on
DFD display is sent to the expert system. Also the
corresponding functions on PAD display are sent to
the expert system. It checks the consistency of both
information, and then reads out fragments of DFD
and PAD which are hierarchically detailed
information of the previous function. In
continuous mode, the system repeats these
hierarchical detailing.

By monitoring the progress of the automatic design
on displays, the designer checks the design and
intervenes when necessary. In cases when the

automatic detailing is not made, the person has to do

" the design (equal to adding a new design rules). In

cases where a correct detailing is not selected, the
person selects an appropriate design.

. A human designer has to trace and check the whole

design. If the detailing is found to be going toward
an incorrect way, the design must diverge from the
previous design at some point by correcting the
design rule to advance toward the new target,
resulting in another 'children to parent' relationship.
Thereafter, such a symbol bears special hatching for
easy recognition.

During automatic design, in cases when a
multiplicity of design rule exits, the most frequently
used design rule (the first candidate) fitted to the
situation is automatically selected and the hatching
appears. When a hatched symbol appears, the human
designer operating this system must select an
appropriate one. All the possible design rules are
displayed on the candidate view window when
clicking “display candidates” button. The original
parent concept and the design rules headed by the
candidate's numbers are shown. In order to choose
another design rule, the designer clicks the number,
the selected design rule is sent to the original design
graphic and the new one replaces previously
designed part.

Figure 7 - Overview of the integrated environment system

-217-

9. This system can also convert a natural language
defined symbol to source code automatically. The
reuse of the relation of a natural language to source
code eliminates the complex knowledge required for
coding, and makes the system independent of the
programming language used.

The system has many other functions. For a normal
operation, the system works with both DFD and PAD
CASE tools. At a high level design (such as for job flow),
however only DFD may be used, and at the last end of
detailed design only PAD may be used. For human
intervention during automatic design, human operations
must be made independently of other CASE tool. For
these purposes, the system can select a CASE tool to be
on-line or off-line.

5. Conclusion

This paper has reported a construction way of expert
systems for automatic design. The systematic way is based
on Software Engineering and systematic acquisition of
design knowledge stemmed from a systematic design work
process of well-matured developers. Design information has
been expressed by unified frame representation. Based on
the standardization of data as well as function, the design
has been reduced to standard work procedures. As a result,
the construction of expert systems becomes easy. This paper
also introduced the integrated environment that may be
applicable from top-level system architecture design, data
flow diagram design down to flow chart and coding. The
design knowledge is automatically acquired from respective
documents and stored in the respective knowledge bases. By
reusing it, a similar software system may be designed
automatically. This system features an essentially zero
start-up cost for automatic design resulting in substantial
saving of design man-hours in the design life cycle, and the
expected increase in software productivity after enough
design experiences are accumulated.

Acknowledgements

This system is based on studies in the Software Creation
Project. The author thanks many students for their
contributions. The author special thank to Dr. Zenya Koono
(Professor, University of East Asia) for his valuable advice
on this study. The authors wish to express their gratitude to
Hitachi, Ltd. and Visio Japan Company for supporting this
study.

References

[1] Chen, H., Far, B. H., and Koono, Z. 1997. A Systematic
Construction Method of an Expert System Used for
Automatic Software Design --Acquisition and
Reproduction of Design Knowledge from Design
Pracess. Journal of Japan Society for Artificial
Intelligence, Vol. 12, No. 4, 616-626.

[2] Chen, H., Tsutsumi, N., Takano, H., and Koono, Z. 1998.
Software Creation: An Intelligent CASE Tool Featuring
Automatic Design for Structured Programming. The
Journal of Institute of Electronics, Information and
Communication Engineers, Vol. E81-D, No.12,
1439-1449.

[3] Chen, H., Takano, H., Abolhassani, H., Koono, Z., and
Far, B. H. 1999. An Approach to an Integrated
Inzelligent CASE Tool for Automatic Software Design.
In Proceedings of the 11th International Conference on
Software Engineering and Knowledge Engineering,
310-314.

[4] Futamura, Y. 1984. Programming Techniques:
Structured Programming using PAD. Ohmsya.

[5] Hayashi, T. and Owaki, T. 1994. Japanese Software
Development Methodology. V. Quality Centered
Methodology and Tools for Developing Computer
Control Software. The Journal of the Institute of
Electrical Engineers of Japan (C), Vol. 114, No. 6,
645-653.

[6] Jackson M A. 1975. Principles of Program Design.
Mass: Academic Press.

[7]1 Koono, Z., Far, B. H., Sugimoto, T., Ohmori, M. and
Chen, H. 1994. A Systematic Approach for Design
Knowledge Acquisition from Documents. In
Proceedings of 3rd Japanese Knowledge Acquisition for
Kaowledge-Based System Workshop, 253-265.

[8] Martin, J. 1989. Information Engineering. Prentice-Hall.

[9] Minsky M. 1986. The Society of Mind. Simon &
Schuster.

[10] Mayers G J. 1978. Composite/Structured Design.
New York: Van Nostrand Reinhold.

[11] 1997. Visio Manual. Visio Corporation.

-218-

