Evolution and Maintenance of Proxy Networks for Location Transparent Mobile
Agents and Formal Representation By Graph Transformation Rules

Masahito Kurihara® and Masanobu Numazawa®

* Hokkaido Institute of Technology
Maeda 7-15, Teine Ward, Sapporo, 006-8585 Japan
Tel: Tel: +81-11-681-2161 ext 455, Fax: +81-11-681-3622, E-mail: kurihara@hit.ac jp

®Otaru University of Commerce
Midori 3-5, Otaru, 047-8501 Japan
Tel: +81-134-27-5385, Fax: +81-134-27-5385, E-mail: numazawa@res.otaru-uc.ac jp

Abstract

Mobile agent technology has been the subject of much
attention in the last few years, mainly due to the
proliferation of distributed software technologies combined
with the distributed Al research field. In this paper, we
present a design of communication networks of agents that
cooperate with each other for forwarding messages to the
specific mobile agent in order to make the overall system
location transparent. In order to make the material
accessible to general intelligent systems researchers, we
present the general ideas abstractly in terms of the graph
theory. In particular, a proxy network is defined as a
directed acyclic graph satisfying some structural conditions.
It turns out that the definition ensures some kind of
reliability of the network, in the sense that as long as at
most one proxy agent is abnormal, there always exists a
communication path, from every proxy agent to the target
agent, without passing through the abnormal proxy.

As the basis for the implementation of this scheme, an
appropriate initial proxy network is specified and the
dynamic nature of the network is represented by a set of
graph transformation rules. It is shown that those rules are
sound, in the sense that all the graphs created from the
initial proxy network by zero or more applications of the
rules are guaranteed to be proxy networks. Finally, we will
discuss some implementation issues.

Keywords:

graph transformation; agent; location transparency
Introduction

Mobile agent technology[1] has been the subject of much
attention in the last few years, mainly due to the
proliferation of distributed software technologies combined
with the distributed AI research field and its potential
applicability[2] , particularly in future intelligent
telecommunication networks[3] . Currently, it is beginning

-151-

to make the transition from research lab to mainstream
software development practice. However, one of the
problems that should be solved includes a requirement for
"openness,” meaning that the underlying infrastructure (the
mobile agent systems) should be open to dynamic
modification, in order to adapt to dynamic, evolutional
nature of the Internet and network applications[4] .

In particular, location transparency of mobile agents is one
of the functionalities required for such a dynamic nature.
Suppose that two or more mobile agents are communicating
to each other for some kind of cooperation. In this
circumstance, it is desired that the communications will not
result in failure even after some agents have moved to other
places without any notice to other agents. Agent systems
that satisfy this condition is said to be location transparent.

Rather than fixed, built-in mechanisms for location
transparency, the framework of typical mobile agent
systems adopts a mechanism based on dynamic evolution
and maintenance of communication networks of
user-defined proxy agents that cooperate with each other
for forwarding messages to the specific target agent. This is
particularly useful when the underlying mobile agent
system is not location transparent, or when one wants to
make the system open to dynamic customization and
modification for location transparency.

In this paper, we present a new network construction
scheme in this framework, and describe the evolution and
maintenance of the networks that are reliable, efficient, and
simple to implement. More precisely, a proxy network is
defined graph-theoretically as a directed acyclic graph such
that

(1) there exists a unique vertex with no outgoing edges,

(2) there exists a unique vertex with exactly one outgoing
edge, and

(3) the remaining vertexes have exactly two outgoing
edges.

Host 1

Host 2 Host 3

proxy 1

4

proxy 2

Figure [- Simple communication path for forwarding messages

The vertex mentioned in the first condition corresponds to
the target agent and all the other vertexes correspond to
proxy agents. It turns out that this definition ensures some
kind of reliability of the network, in the sense that as long
as at most one proxy agent is abnormal, there always exists
a communication path, from every proxy agent to the target
agent, without passing through the abnormal proxy.

As the basis for the implementation of this scheme, an
appropriate initial proxy network is specified and the law of
the evolution and maintenance of proxy networks is
formalized as a set of graph transformation rules. It is
shown that those rules are sound, in the sense that all the
graphs created from the initial proxy network by zero or
more applications of the rules are guaranteed to be proxy
networks, thus ensuring reliable location transparent
communications among mobile agents. This scheme has
been implemented in Java RMI and incorporated into
Telepathy, a mobile agent system developed by the authors.

After briefly reviewing mobile agent systems and location
transparency in the next section, we will formally present
the definition of proxy networks and their properties in
Section 3. Then in Section 4 we will present the evolution
and maintenance of proxy networks, based on the initial
proxy network and a graph transformation system, and
discuss its soundness. The last section summarizes our
work and briefly discusses some implementation issues.

Approach and Methods

Mobile agent systems and location transparency

Abstraction of software systems is a useful tool for making
them easier to write, maintain and reuse. The concept of
mobile agents takes the abstraction one step further than in
current objected oriented prograimming to make it suitable
for structuring distributed programs. Conceptuaily, a mobile
agent is a software component that can autonomously move
from place to place in a computer network. A mobile agent
system is a platform for this technology and works as a kind
of middleware on top of conventional operating systems. It
is argued that the use of this technology results in
distributed software that is robust to system failures (due to
unreliable communication lines or devices) and intuitive to
write in a well-structured manner[5] .

A general overview of the ideas and technologies behind
mobile agents can be found in[1] . Several mobile agent
systems have been developed, such as Telescript[6] , Agent
Tcl[7] , and Aglets[8] .

-152-

A mobile agent system is location transparent if the
communications between agents will be always maintained
even after one or both of the agents have moved to other
host computers without any notice to other agents. This
means that agents can communicate with each other
without caring about the location of other agents. This
simplifies the structure of the communication programs
significantly. Clearly, implementation of the location
transparency requires some effective schemes for pursuing
and accessing the current location of agents. At least the
following three schemes have been identified[9] .

Logging: Before moving, the agents leave in the agent
server the trail information containing the next location
to which it is about to move.

Brute Force: The system searches for the location of
the target agent by sending an appropriate query to
every agent server.

Registration: The system keeps the locations of all
agents in a unique directory server, updating the
information each time an agent makes a move.

Clearly, the selection of a specific implementation scheme
would greatly affects the performance and reliability of the
overall systems, and the best choice would depend on the
application domain.

There is a scheme of location transparency that is open to
modification and customization by the application
programmers. Such a scheme is based on dynamic creation
of auxiliary, application-level agents called proxies. When
an agent (let us call this agent the target) is about to make a
move, it creates an agent whose only purpose is to work as
a substitute for the target at the current place, receiving
future messages for the target and forwarding them to the
target wherever it may be. By assigning to the proxy the
same agent identifiers as the target, the communications is
kept location transparent, meaning that it causes no trouble
and no special information update to other agents
participating in the communications.

The program code for the target and proxies may be
developed or customized by application programmers in a
relatively straightforward manner based on object-oriented
programming tools. The basic behavior of the system is to
connect the target with the newly-created proxy each time
the target makes a move. This process is repeated each time
the target changes its place, yielding a path from the oldest
proxy to the current target along a sequence of host
computers. Messages received by the proxies are forwarded
to the target along this path. Figure 1 illustrates the situation
after the target has made three moves.

This scheme is simple and effective but has at least two
problems. The first problem is its reliability. If there exists
a proxy that is abnormal or does not work effectively, then
the messages would not delivered to the target.

Another problem is its performance. The length of the
communication path is equal to the number of the moves
the target has made, so the path will get longer and longer
as the target moves.

In the next section, we will present a new scheme that is
still simple but effectively solves the two problems.

Design of Proxy Networks

In this section we will formally present the definition of
proxy networks and their properties that characterize their
reliability. We start with the following formal definition,
which - is a graph-theoretical abstraction of the
message-forwarding networks we propose in this paper.

Definition 1 A proxy network is a finite, simple, directed
acyclic graph (DAG) G=(V, E) that satisfy the following
three conditions. (The vertexes of V are called agents, and
the directed edges of E are called links. By definition, a
simple graph contains no parallel edges, which connect the
same start and end vertexes; and an acyclic graph contains
no circuits.)

1. There exists a unique agent (called the targer) with
no outgoing links. (The agents other than the target
are called proxies.)

2. There exists a unique proxy (called the special
proxy) with exactly one outgoing link. The link
should be connected to the target.

3. The remaining proxies (called normal proxies)
have exactly two outgoing links.

Some instances of proxy networks are shown in Figure 3.

The following theorem characterizes the reliability (or
robustness) of proxy networks. Informally speaking, even if
some proxy w is abnormal or does not work effectively, the
messages received by any other proxies v can be safely
delivered to the target without passing through w.

Theorem 1 For all pairs of distinct proxies v and w, vZ w,
there exists a path from v to the target without passing
through w.

Proof. Start from v and follow an appropriate path as
follows. At normal proxies, follow a link (chosen from two
outgoing links) whose end vertex is not w. (The simplicity
of the graph ensures the existence of such a link.) In this
way you never visit w. This process can be repeated as long
as you are at a normal proxy. However, since the network is
acyclic and finite, you cannot repeat this process
indefinitely. This means that at some time you will reach
either the special proxy or the target.

If you are at the target, then you are done. Otherwise, you
are at the special proxy, and then you can follow the unique
outgoing link connected to the target. (Proof End)

Note that this proof constructively suggests a most efficient

-153-

algorithm for choosing a path to the target: simply follow
any link whose end vertex is not w.

Evolution and Maintenance of Proxy Networks

As long as the mobile agent stays at the birth place, there
exists no proxy network in the mobile agent system. The
first time the agent has moved to another place, the initial
proxy network Gg=(V, E) is created, where V={t, s} consists
of the target ¢ staying at the current place and the special
proxy s remaining at the birth place; and E={(s, #)} consists
of a link connecting s and ¢. See Figure 2.

OO,

Figure 2 - The initial proxy network G,

Every time the agent moves to another place, the network
should be dynamically modified so that the resultant
network maintains the properties required in Definition 1.
Let us call this dynamic nature of modification the
evolution (if V is extended by a new element) or the
maintenance (if V is unchanged), and represent it by a
graph transformation system.

The transformation system is defined as a set of graph
transformation rules given in Definition 2, where we will
use the notation as follows. We write G— G’ if the graph
G' can be obtained from G by a single application of a
graph transformation rule. When a proxy network is
literally denoted by G=(¥, E), we use the letters ¢ and s to
denote its target and the special proxy, respectively. The
symbol + denotes the disjoint set union, meaning that 4A+B
implicitly requires that the sets 4 and B have no common
elements. The set difference is denoted by the symbol —, i.e.,
A-B=ANB.

Definition 2 The proxy network transformation system
consists of the following four graph transformation rules.
See Figure 3.

Move to a new place:

(V, E)—>(V +{u}, E+{(#,u), (s, v)})

This rule is applied when the agent (the current target)
moves to a new place. The agent u is the target of the
new network, while the target ¢ of the current network
will become the special proxy with the unique outgoing
link to u attached, and the current special proxy s will
become a normal proxy with a new link to u attached as
the second outgoing link.

Move to the special proxy:

(V, E)>(V, E={(s,)} +{(z 5)})

This rule is applied when the agent moves back to the
place where the special proxy exists. The new network
is formed by reversing the direction of the link (s, #).
The special proxy s will become a new target, and the
current target ¢ will become the special proxy.

O30 = O

(a) Move to a new host

—

(b) Move to the special proxy

—

(¢) Move to a normal proxy

oesonofgol

(d) B ypass

Figure 3 - The proxy network transformation system

Move to a normal proxy:

(Va E)—)(Va E_{(ua x)a (u7 .Y)}+{(t9 u)a (S, u)}) where
ue V-{t, s}, and {(u, x), (u, y)} denotes the set of links
outgoing from u.

This rule is applied in almost the same situation as the
previous one except that it is a normal proxy that should
exist at the place where the agent has moved. In the new
network, the normal proxy u will become the target,
with all the (two) outgoing links removed; and the
agents ¢t and s will become the special proxy and a
normal proxy, respectively.

Bypass:

V, Ey>(V, E-{(u, v)} +{(u, w)}) if v#w and w is
reachable from v.

The link (u, v) is replaced by a bypass link (u, w). This
rule is useful for increasing the efficiency of the
network, because it makes some paths to the target
shorter, at the small cost of local modification of links.
In practice, we can take the target ¢ as w, as in the
logging schemes in many existing systems. More
precisely, we apply this rule just after a proxy u has
received a message and forwarded it along a path to the
target ¢. Actually, we can take all the proxies on this
path as u, and all the links (%, v) contained in this path
are replaced by the direct links (u, #) to the target, by
application of this rule to each u.

-154-

Also, this rule may be applied when the performance of
a proxy v has been significantly degraded or when the
proxy is about to be deleted. In this case, the link (u, v)
in the subpath ¥ —v— w will be replaced by (u, w).

We write G, — G if there exists a sequence
Go—= G;—...—> G, = G, n>0, meaning that the graph G is
obtained from the initial proxy network G, by zero or more
applications of rules of the proxy network transformation
system. The following theorem ensures the soundness of
the transformation system, in the sense that the properties
required for the proxy networks in Definition 1 are always
maintained as long as they are transformed by this system.

Theorem 2 If G,—" G, then G is a proxy network.

Proof (Sketch). In order to prove that a graph is a proxy
network, you have to show the finiteness, simplicity, and
acyclicity of the graph together with the three conditions in
Definition 1.

The proof is based on induction. For the base case, we can
easily verify that the initial proxy network G, is a proxy
network. (The third condition for the normal proxies is
vacuously true.) For the induction step, we show that if G is
a proxy network and G— G’ then G’ is also a proxy
network. This can be proved by simple case analysis for
each graph transformation rule. (Proof End)

Discussion

Let us briefly discuss some implementation issues here.

Our scheme would fail if two hosts would be failing.
However, our results can be easily improved. Actually, it is
not hard to extend the proxy network so that the messages
are forwarded to the target even if there are two failed hosts.
(We just require normal proxies to have three outgoing
links and introduce another kind of special proxy with two
outgoing links.) Nevertheless, we think that the current
version of the proxy network is useful enough, because if
we can assume that such failure events occur independently
with probability p, the probability of two hosts failing is the
square of p, which is practically very small, assuming p is
small enough.

It makes sense to think about the case where many agents
roam the network. In this respect, we should distinguish
abstract design (as presented in this paper) from its
implementation. It is a good idea to have a single
configurable proxy manager, rather than multiple copies of
proxies, in an actual implementation. This paper never
excludes this idea. In our formal framework of the system,
we have never required that agents should be copied. This
kind of issue is a genera] problem of implementation of
data structure, particularly when the structure is defined in a
mathematical framework. In the implementation, we often
have a choice of how to retain multiple mathematical
entities: retain them as copies or let a part of their structure
be shared in order to save the memory space? The practical
system should be implemented such that agents are not
copied but share as much structure as possible, when there
exist many agents in the system. For example, if the agents
are implemented in an object-oriented way as instances of
the same class (which is often the case), the class files can
be shared at each host.

It is an important issue how to determine the failed hosts. In
this paper, however, we take the position that this issue is a
general problem common to virtually all the
communication networks and not specific to the proposed
scheme. Thus we would rather consider this problem an
implementation issue which should be resolved for each
network environment and application.

Conclusion

We have presented the general idea of new communication
networks for location transparent mobile agents.
Specifically, we have presented the formal definition of
proxy networks and shown their reliability in Theorem 1.
Then we have formalized the evolution and maintenance of
proxy networks as the proxy network transformation system,
and proved its soundness in Theorem 2. Note that Theorem
1 describes a static property of the network, while Theorem
2 clarifies the dynamic nature.

-155-

References

[1] Cockayne, W. R. and Zyda, M. 1998. Mobile Agents.
Manning Publications.

[2] Johansen, D. 1998. Mobile agent applicability. In Proc.
2nd Intern. Workshop on Mobile Agents, Lecture Notes
in Computer Science 1477: 80—98.

[3] Hayzelden, A.L.G. and Bigham, J. 1999. Future
communication networks using software agents, In
A.L.G. Hayzelden eds. Software Agents for Future
Communication Systems, Springer-Verlag: 1-57.

[4] Minar, N. and Kramer, K.H. 1999. Cooperating mobile
agents for dynamic network routing, In A.L.G.
Hayzelden eds. Software Agents for Future
Communication Systems, Springer-Verlag: 287-304.

[5] Appleby, S. and Steward, S. 1999. Mobile software
agents for control in telecommunication networks. In
A.L.G. Hayzelden eds. Software Agents for Future
Communication Systems. Springer-Verlag: 270-286.

[6] White J. E. 1997. Telescript technology: mobile agents.
In Bradshow, J.M. ed. Sofiware Agents: MIT press.

[7] Kotz, D. 1997. Mobile agents for mobile Internet
computing. JEEE Internet Computing. 1, 4; 58-67.

(8] Lange, D.B. and Oshima, M. 1998. Programming and
Deploying Java Mobile Agents with Aglets.
Addison-Wesley

[9] Aridor, Y. and Oshima, M. 1998. Infrastructure for
mobile agents: requirements and design, In Proc. 2nd
Intern. Workshop on Mobile Agents, Lecture Notes in
Computer Science 1477: 38-49.

