Dielectric Properties of BSCT Ceramics for Phase Array Antenna

Joohun Cho, Sung-Gap Lee, Sung-Soo Lim, In-Gil Park

Abstract

(Ba_{0.6-x}Sr_{0.4}Ca_x)TiO_3 (x=0.10, 0.15, 0.20) specimens were fabricated by the solid state reaction method and then the structural and dielectric properties as a function of the composition ratio and sintering temperature were studied. The BSCT (50/40/10) specimen sintered at 1500°C showed the highest average grain size (18.25 μm). The Curie temperature and dielectric constant at room temperature decreased with increasing Ca content. The dielectric constant and dielectric loss of the BSCT (50/40/10) specimen, sintered at 1450°C, were about 4324 and 0.972% at 1kHz, respectively. Dielectric constant at room temperature decreased with increasing an applied field, tunability of the BSCT (50/40/10) sintered at 1300°C was 18%.

Key Words : BSCT ceramics, dielectric properties, phase array antenna, tunability

1. 서론

강유전성 BaTiO_3 세라믹은 적층 세라믹, PTC 서미스터, 양전 변환재료 등에 다양한 응용분야를 가진 재료로서 현재 가장 널리 활용되고 있는 전자세라믹 재료중의 하나이다. BaTiO_3은 소량의 불순물을 첨가한 소금결정을 받아 변화시키며, 강유전 특성을 높이기까지 다양한 진기적 특성을 나타낸다. 최근에는 우수한 전기적특성을 이용하여 반도체 DRAM 소자의 유전체재료로서, 초고주파 대역의 유전체 공정기술로도 널리 이용되고 있다. [1,2] 그러나 BaTiO_3은 120°C의 온도범위에서 결정구조가 강유전성의 정방정계에서 상 유전성의 간상정계로 변화하는 성질이므로, 0°C와 -90°C 부근에서는 결정구조가 변화하는 전이온도를 가지고 있어 온도에 따른 전기적특성의 변화가 큰 단점을 가지고 있다. 최근에는 BaTiO_3의 단점을 극복하고, 우수한 전기적특성을 활용하기 위해 여러 가지 불순물의 첨가와 재조방법을 변화시키는 연구가 활발히 진행되고 있으며, 특히 상전이 온도부근에서 유전성수가 급격히 변화하는 특성을 이용하여 고감도 적외선 충돌기의 응용을 위한 연구와 상전이 온도에서의 높은 유전성특성을 이용하여 유전체 안테나에의 응용을 위한 연구가 진행되어지고 있다.

따라서 본 연구에서는 BaTiO_3의 온도변화에 따른 전기적특성의 안정성을 향상시키기 위해 Ba_{0.6}Sr_{0.4}CaTiO_3 (BSCT) 세라믹을 제작하였으나, 위상차 배열 안테나의 응용가능성을 조사하기 위해 조성 및 소결조건에 따른 구조적, 유전적특성을 측정하였다.

2. 실험

본 연구에서는 조성식 (Ba_{0.6}Sr_{0.4}Ca_x)TiO_3 (x=0.10, 0.15, 0.20)에 따라 BaCO_3, SrCO_3, CaCO_3 및 TiO_2 시료를 평행한 면, 고양 반응형으로 시험을 제작하였다. 먼저 평행된 각 시료물 이세션을 분산해
로 지르코니아를 24시간동안 혼합 분쇄하였으며, 혼합 분쇄된 실료를 100℃의 진기오븐에서 24시간동안 건조한 후, 재분쇄하여 1100℃에서 2시간동안 가속화 하소하였다. 하소된 분말은 PVA를 3wt% 참가한 후, 알루미나 용액을 이용하여 분쇄하고 #100 배체로 체가름하였다. 체가론한 분말은 진동형 균형(φ 12mm)에 넣고 1ton/cm²의 압력으로 성형한 후, 1300℃ ~ 1500℃에서 2시간 동안 소결하였다. 소결된 시편은 1mm의 두께로 연마한 후, 시편의 양면에 실크 스크린부로 운전극을 부착하여 전기적 특성을 측정하였다. 결정립의 형태, 결정입체, 기공 등의 미세구조는 전자현미경(SEM)을 이용하여 관찰하였으며, 유전특성은 impedance/gain analyzer(HP 4194A)를 이용하여 측정하였다.

3. 결과 및 고찰

그림 1은 BSCT(50/40/10) 시편의 소결온도에 따른 표면 미세구조 사진이며, 소결온도가 증가함에 따라 평균 결정립의 크기는 증가하는 경향을 나타내었다. 1300℃와 1500℃에서 소결시간 시편의 경우에는 조밀한 결정립과 거대 결정립이 혼재되어 분포된 미세구조를 나타내었으며, 소결온도가 1400℃ 이상인 시편에서는 전체적으로 거대한 크기의 결정립 분포를 나타내었다. 시편의 조성변화에 따른 미세구조의 외관성은 관찰되지 않았으며, 모든 시편에서 비교적 치명하고 미반응 물질 등의 2차성이 존재하지 않는 깨끗한 미세구조를 나타내었다.

그림 2는 BSCT 시편의 조성 및 소결온도에 따른 상온에서의 비유전장수와 유전손실을 나타낸 것이다. Ca의 첨가량이 증가함수록 BSCT 시편의 비유전장수는 감소하는 특성을 나타내었으며, 이는 최대 비유전장수를 나타내는 상온이온도가 Ca 첨가량에 따라 견인량으로 변함에 따라 기인한 것으로 사료된다. 소결온도가 증가함에 따라 상온에서의 비유전장수는 증가하여 1450℃에서 소결시킨 BSCT(50/40/10) 시편에서 4324의 최대값을 나타낸 후, 1500℃에서 소결시킨 경우 약간 감소하는 특성을 나타내었다. 이는 1300℃에서 1450℃까지 소결온도가 증가함에 따라 고유전장의 결정립의 성장과 결정입체에서 유호 공질의 감소로 인한 것으로 보아지며, 1500℃의 경우에는 구조적 특성에 따른 반응적인 변화가 파일 소결에 의해 유전장수가 약간 감소하는 것으로 사료된다. 유전손실은 BSCT 시편의 조성에 따른 외관성은 관찰되지 않았으며, 1500℃ 이상에서 소결시킨 모든 조상의 시편에서 1% 이하의 우수한 특성을 나타내었다.
그림 3은 -25°C에서 85°C까지 온도변환에 따른 BSCT 시편의 비유전상수를 나타낸 것이다. 최대 유전상수를 나타내는 상전이온도는 Ca의 조성비가 증가함에 따라 저온측으로 이동하는 경향을 나타내었으며, 소결온도에 따른 영향은 관찰되지 않았다. 본 연구에서 선택한 조성의 BSCT 시편은 상전이온도가 모두 0°C 이하이었으며, 실온부근에서의 비유전상수는 Ca의 조성비가 감소함에 따라 그리고 소결온도가 증가함에 따라 증가하는 특성을 나타내었다.

그림 4와 5는 각각 600MHz에서 1GHz까지 주파수 변화와 인가 전압에 따른 비유전상수와 유전손실을 나타낸 것이다. 주파수가 증가함에 따라 유전상수는 감소하는 경향을 나타내었으며, 1450°C에서 소결사 진 시편에서 최대의 유전상수 특성을 나타내었으며, 전제적인 특성은 소결온도에 대해 일관한 변화를 나타내지 않았다. 유전손실은 소결온도에 대한 의존성은 나타나지 않았으며, 모든 시편에서 0.3% 이하의 유한한 특성을 나타내었다. DC 인가전압이 증가함에 따라 비유전상수는 약간 감소하는 특성을 나타내었으며, 비선형적인 관계를 갖는 것으로 보아 Johnson 이론에서 고찰된 바와 같이 상전이상의 정육면체내의 Ti 이온이 비조화성 상호작용에 기인한 것으로 사료된다.[3]

![Fig. 4 Relative dielectric constant of BSCT specimens as a function of the frequency and sintering temperature.](image)

그림 6은 1MHz에서 측정한 BSCT 시편의 소결온도에 따른 tunability를 나타낸 것이다. 1300°C에서 소결시킨 BSCT(50/40/10) 시편에서 약 18%의 가장 우수한 특성을 나타내었으며, BSCT(45/40/15) 시편과 BSCT(40/40/20) 시편의 경우에 소결온도에 영향을 받지 않고 약 2% 이하의 낮은 특성을 나타내었다. 이러한 특성은 시편의 상전이온도와 관계가 있으며, BSCT(50/40/10) 시편의 상전이온도는 0°C

---

- 991 -
부근으로 확산형 상전이특성을 나타내며, Ba의 함량이 적을수록 큐리온도는 감소하고 있다. 따라서 실온부근에 존재하는 일부 강유전상의 냉각자 배열이 임가전계에 따라 영향을 받기 때문에 우수한 특성을 나타내며, Ba의 함량이 적은 시편에서는 실온에서 완전한 상전이성으로 선형 커다란 사양은 감소하며, 따라서 tunability가 감소하는 것으로 사료된다. 그러나 이러한 우수한 특성에도 불구하고, 1300℃에서 소결한 시편의 경우에 유전순수성이 매우 높아 실제 위상차 배열 안테나의 phase shifter로서 용용하기가 어렵다.

Fig. 5 Tunability of BSCT specimens as a function of the sintering temperature.

결정성의 미세구조를 나타내었으며, 1500℃에서 소결한 BSCT(45/40/15) 시편에서 18.25μm의 최대 평균 결정립 크기를 나타내었다. BSCT 시편의 Ca 조성비가 증가함에 따라 실온에서의 유전순수성은 감소하는 경향을 나타내었으며, 1450℃에서 소결시킨 BSCT(50/40/10) 시편에서 유전순수성은 4324, 유전순수성은 0.972의 우수한 유전특성을 나타내었다. BSCT 시편의 Ca 조성비가 증가함에 따라 상전이온도는 감소하는 특성을 나타내었으며, 1300℃에서 소결시킨 BSCT(50/40/10) 시편에서 18%의 tunability 특성을 나타내었다.

감사의 글
본 연구는 한국과학자협회 및 기초연구(2000-1-30200-016-2) 지원으로 수행되었다.

참고 문헌