한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
- /
- Pages.292-294
- /
- 2001
- /
- 1598-5164(pISSN)
Competitive Unit을 사용한 Helmholtz Machine에 의한 문서 클러스터링
Topical Clustering of Documents using Helmholtz Machines with Competitive Units
초록
문서 클러스터링은 정보검색 시스템에서 검색과정의 효율성을 향상시키기 위해서 많이 사용된다. 기존의 K-means 클러스터링과 같은 거리-기반 접근 방법은 거리에 대한 척도를 정해야 하는 문제가 있고, 또한 전체 자질 공간에서 지역적 특성에 민감하기 때문에 문서 내에 노이즈가 존재할 경우 만족스러운 결과를 내지 못할 수 있다. 그리고 기본적으로 문서 데이터는 희소성(sparseness)을 가기 때문에 정규 분포를 가정한 mixture 모델을 적용하기도 어려움이 있다. 본 논문에서는 Helmoholtz machine에 의한 문서 클러스터링 방법을 제안한다. 제안되는 방법에서는 하나의 문서를 어떤 내재적인 요인(factor)들의 다양한 결합에 의한 결과로 가정하는데, 이 때의 요인은 주제어 집합 또는 적어도 의미적으로 유사한 단어들의 집합이다. 그리고 기본적으로 Helmholtz machine은 이진 데이터를 다루는데, 텍스트 문서에 나타나는 단어들의 빈도를 고려하기 위해 수정된 Helmholtz machine을 제시한다. TREC-8 adhoe 데이터와 20 Newsgroup 문서 집합에 대한 클러스터링 실험 결과, 제안된 방법이 K-means 알고리즘에 비해 우수한 성능을 보였으며 주제어 추출을 통해 문서 집합의 전체 내용 파악을 용이하게 하는 특성이 있었다.
키워드