The Efficient Query Evaluation Plan in the
Spatial Database Engine

*Zhao-Hong Liu', Sung-Hee Kim', Jae-Dong Lee®, Hae-Young Bae'
'Dept. of Computer Sci. & Eng., Inha Univ., Inchon, 402-751, Korea
2Dept. of Computer Science, Dankook University, Korea
*macromliu@hotmail.com

Abstract
A new GIS software Spanal Database Engine (SDE) has been developed to imtegrated with spatial database that combines
conventional and spatially related data. As we known well in the traditional relation database system, the query evaluation techniques are
a well-researched subject, many useful and efficient algorithms have been proposed; but in the spatial database system, it is a litter
difference with the traditional ones. Based on the Query Graph Model (QGM), we implemented our own query evaluation plan in the
SDE, which can deal with the full functionality query statement SELECT-FROM-WHERE-GROUPBY-HAVING. and treat the spatial
data and non.spatial data seamlessly. We praposed a novel multi way join algorithm base on nest loop that may be attractive.

1. Introduction

Data intensive geographic applications such as cartography,
yrban planning, and natural resource management are build by
GISs, GISs are database systems that allow the manipulation,
storage, and retrieval of geographic data and the display of data
in the form of maps. The spatial DBMS provides the underlying
database technology for GISs and other applications. Spatial
DBMS (i) is a database system; (i} offers spatial data types
(SDT} in its data model and query language; (iii) supports
spatial data types in its implementation, providing al least spatial
indexing and efficient algorithms for spatial join. [7]

We adopted a conventional storage manger system to store
the data. 1t supports the traditional atomic data type and BLOB
data type. Base on the storage manager, we implemented our
own Spatial Database Engine (SDE), which use the SQL
language as the query language. In the SQL, based on the Open-
GIS and SQL-99, we support the standard SQL as more as
possible, thus we need deal with the complex query such as
SELECT-FROM-WHERE-GROUBY-HAVING, we add the
complex query support function to the system, and at last
constructed our own query evaluate party. This paper will
address the issues of query evaluation plan for queries. Retrieval
for data manipulation (UPDATE, DELETE) is treated similarly.

Section 2 pives an introduction about the Spatial Database
Engine and the Query Graph Model (QGM). Section 3 prescnts
the query evaluation plan model, and the query plan in our
system, a novel mufti way join algorithm is also been proposed.
Section 4 dates some conclusions.

2. Spatial Database Engine and Query
Graph Model

The Spatial Database Engine is the kemel of the spatial
database system.

[n the Figure | architecture, the Client part provides the GUI
(Graphics User [Interface). It is composed of Communication
Module, Cache management, Local Query Processor, Drawing
Module and User Interface Module.

The Spatial Database Engine is the system’s server program,
it responses for storing and managing the spatial and non-spatial
data in a DBMS, provides computing function, and serves multi-
clienc at the same time. The communication madule translates
the packet format or SQL query received from user into
database query. The QPE (Query Processing Engine) parses the
queries received from user, executes it using the interface
supparted by MiDAS-IIL. In the SDE, it uses the spatial query

This research is supported by Ministry of [nformation and
Communication under work of University S/W rescarch center.

22

[Uner]
| User Infarface Module X _l
[TCacna |Locai Cunry | Orawmg
. mgmt | Pracessar | Module Chen:
Communicaion Module
[pe——————
0 T ; - Internat ot latranat : :
' —_—
[~ Communicatgs Wodu .

~ EJ saLiPackst

Spatia)
Datupase
Engine

Parsar Quary Processor
(QPE}

Exaculor

Resull Tabls]

Storage Mgr intnrtace

—!DII\II DBMs

rl MIDAS Btozage
manager

Concuridngy Cantral
Recovery Mgml
Butter Womt IJ

==
ren-spatiai Data

Figure 1: Architecture

language supporting spatial operation, which is extended from
basic SQL and compatible with the Open GIS, and supports the
well-known spatial logical operation, such as intersect, disjoint.
contzin, equal, touch, cross and overlap etc, spatial arithmetic
operation, such as xcenter, ycenter, length, perimeter, distance,
union, difference, intersection, xor, buffer, convexhull, as also
the spatial aggregate functien groupunion,

The Query Graph Mode! was systemically introduced in the

.IBM DB2’s research paper{2]. Query are parsed and internally

represented in a Query Graph Model (QGM), which is stored in
an object-relationship in-memory ¢++ structure, QGM supports
arbitrary table operations whose inputsfostputs are tables,
Examples of operations are SELECT, GROUP BY, UNION,
INTERSECT and EXCEPT ({set difference). Nete that the
operation SELECT handles restriction, projection and join in
SQL. We present the QGM through a simple SQL query:

select distinct ql.partno, q1.descry, g2.suppno
from inventory q1. quotations g2
where q1.partno = g2.parno and q1.descry="engine’;

This query returns information about suppliers and ‘engine’
parts. Figure | shows the QGM for this query. The graph
contains three boxes {or equivaleatly operations). Boxes | and 2
are associated with base tables invenfory and quotations, and
box 3 is a SELECT box associated with the main party of the
query. Each box has a head and a body. The head describes the
output tahle produced by the box, and the bedy specifies the
operation required 1o compute the output table. Base tables can
be considered 1o have empty or non-existent bodies.

20019 % g4y ststs] 2

5t

ul 3

s R =04 Vol 28, No. 1

Let's consider Box 3. The head specifies outpul columns
specificd in the select list of the query. The head has a Boolean
attribute called distinef which indicates whether the associated
table contains only distinct tuples (i.e. head.distinct is true), or
whether it may contain duplicates {i.e. head.distinct is false).

The body of a box contains a graph. The vertices of this
graph (the dark circles in the diagrams) represent quantified
tuples variables, called quantifiers. In Box 3, we have
quantifiers g/ and g2 --they range over the base tables
inventory and quotations respectively, and correspond io the
table references in the FROM clause of the SQL query. These
quantifiers have a quantifier type attribute, F (ForEach), and
some of their columns are used in the output; and a distinct
attribute which has the value of enforce, preserve, permit. The
edge between g/ and g2 specified the join predicate. The {loop)

77 Boxs GUERY ..
! dratmet>TRUE .
! weapw] Parmo deser | suppre N
=51 pareo. } Tl deacr | ELETTTT i \‘
\ sELECT ¢
i IF Q2F) '
T amel distinct ® !
i Bapy - ———— ERFORCE |
H o partneeqz.naring N
' Siatpler '
B wargine -
.
¥ s
Ly - -
pattnh, diree panaaipre

®_ avannrer T

COLUKINS

i

o _— \
Hort _D_‘lj Box ’:DZ]_‘""“‘

Figure2. Example QGM graph

The body of every box has an attribute called distinct with
values enforee, preserve or permit. Enforcc means that the
operation must eliminate duplicates in order to enforce the
output pul to be duplicate free (ic., head.distinct is true).
Preserver tneans that the operation must preserve the duplicates.
This could be because head.distinet is false, or because
head.distinct is true and no duplicate could exist in the output of
the operation even without duplicate elimination. Permit means
that the operation is permitted to eliminate duplicates arbitrarily.
For example, subguery boxes can have the value permit because
duplicates returned by subquery do not affect the answer set.

3. Efficient Query Evaluation Plan

In this section, we firstly give a brief introduction of the
query evaluation plan models; secondly, the phase in the query
evaluation model; thirdly, the query plan in the SDE, available
way presented to solve the problem, and the advantage and
shoricomings; lastly, our own spatial query plan methods also be
introduced. '

3.1 The Query Evaluation Plan Model

The typical query evaluation models is composed of parse,
validate, rewrite (optimization), plan (optimization) and

evaluation phases.

Figure 3. Phase of Query Processing

3.2 Parse, Validate and Rewrite

In the parser phase, the SQL text commands are transtated
into intemally presentation, we translate the DDL part into
parser tree, the DML part into QGM direcily. The having clause
has been translated into a where clause in a SELECT box, the
group by clause has been translated into a GROUPBY box with
the child box is the original query SELECT-FROM-WHERE
part.

After the parser tree/QGM is constructed by the parser part,
we apply the validate check, it will check the syntax and
semantic error. The validation accumulates the names of tables
and columns referenced in the query, looks them up in the
system’s catalog to verify their existence and to retrieve
information about them. After obtained the table catalog
information. the validation rescans the SELECT-List and
Where-tree to check for semantic error in both expressions and
predicate comparisons.

Here, we normalize the where clause, having clause (in the
QGM,) with the conjunctive normal form.

We consider the entire spatial predicate into the where clause,
including the spatial predicate, so we can deal with it as same as
the alphanumeric predicate, and in the Normalization phrase, we
adopted the Conjunction Normalization algorithm.

Definition:
CNF Tree: predicates linked by the OR, i.e. avbvend
CNF Forest: CNF trees linked by the AND,

i.e. : (avbvevd) A (avbveviialavevg)

Algorithm 3.1:
Input: Binary Tree composed by predicate
Output: Conjunctive Normal Form Forest
Method:
i} For the terminal node (predicate)
Retum a AND node pointing te an OR node, and
attach the terminal node {0 the OR node;
ii) For the intermediate AND node
Normalize the left sub tree;
Normalize the right sub tree;
Return CNF_AND_MERGE(left, right); (plus}
iii) For the intermediate OR node
Normaltize the left sub tree;
Normalize the fight sub e
Return CNF_OR_MERGER (left, right}: {(multiply)

In the rewrite phase, the QGM are translated equally from
one state 1o ancther state. Such as

After the rewrite phase, the (GM has been translaled to a
state, it does rot have correlated query and the local predicate
has been putted on the basic table block properly, the each
Conjunctive Normal Form trees (compaosed by the OR) alse has
been putied on the related box. For exampie, the query in Figure
2, after the rewrite phase, the local predicate/filter ql.descry
= engine’ wilk firstly be presented in the Conjunctive Normal
Form, then moved from Box 3 to the Box 1. Of course, one CNF
tree mixed with non-spatial predicate and spatial predicate. but
only referenced to one table, is also moved to the related box.

3.3 Plan, Evaluation

The typical plan procedure is
divided into logical plan and

; Mult: Way Join
physical plan.
I the Logical plan phase, the
querigs that presented in query A B C [Aggregate
graph (QGM) are translated to Join

logical algebra (such as Selection,
Projection, Join, Sort, Group By,
Remove Duplicate, Aggregate) D E

Secqndly, the Io_gical a]gehl:a Figure 4. a bushy-tree like
used in the Iogl_cal plan is multi way join plan
translated to physical alpebra.
Different logical algebra are mapped into related physical
algebra, the Logical Selection is been mapped into Selection
(intermediate node), Sequence Scan, Indexed Scan (base table),
the Projection is been mapped to Projection, the Jan is been

20019 % A ustsy] &

st

. —
61‘-.5_'"3_11_

H1l- It

=4 Vol. 28 No. 1

mapped Nest Loop Join, [ndexed Nest Loop Join, Equal Join,
Merge Join, Product, Spatial Join (none index, one index, two
index) based on the filter condition attached with this execute
node.

In one Box, if there are more than 2 quantifiers, the
traditional plan need consider the order in which the blocks
should be chosen to join. There are three types: left-deep, busy,
and right-decp. We prefer the bushy tree and multi way join, i.e.,
in Figure 4 it is a bushy tree like multi way join, In the
following it is the novel multi-way jein algorithm.

Algorithm 3.2: multi-way join algorithm

0. Every execule node, there is a member data m_pFilter with
the type CNF forest, a member data m_pFilterArryl] with the
type CNF forest. For simplicity, we suppose the quantifier list
as Qf, Ql, Q2, 3, Q4 by orderly; a buffer array to save
every child block’s one record; 2 m_nState array with the
valye FIRST, NEXT, EMPTY;

. Preparations:

For every CNF tree in the m_pFilter, check the referenced
table list. Initial the m_pFilierArray[QuantifierCount-1],
collect all the CNF tree which's refersnce table is (Q4, Q3),
constuct them into a CNF forest, assign o
m_nFilterArray[0], the CNF forest with the CNF trees with
the referenced table m (Q4, Q3. Q2) assign to
m_pFilterAmay[1].......

b

. Totailnitial{)
triteal the bulfer array with QuantifieeCount Element;
Initia) the m_nState]QuantifierCount} with the initial value
FIRST:
For (int i = 0; i < QuantifierCount; i-+) {
Call i* guantifier's related subblock open();
Read First record to i record buffer;
If the return is null, return false;

;

Return true:

L

. Partfnitial (int pos}

FOR (inti=0;i < pos; i++) {

Catl i™ quantifier’s related subblock Open();
Read the record to i*” buffer;
m_nState[l] = FIRST,;

}

FOR {int j =1 ; j <= QuantifierCount - [j++) {
Cal j™ quantifier’s related subblock next(),
Read the record to j™ buffer;
1F return value is NULL {

Set m_pStane[j] to FIRST:

™ Black Open();

read first record 1o J* buffer,
JELSE §

set m_nState[}] to NEXT;

Retumn false; //mean continue

, H

IF ((j — QuantifierCount) && (m_nState[QuantificrCount]

==F|RST)) return trae;

-

_ JoinAlgotithm()
iIF Toallnitl(} is FALSE, end;
While(1)}
inti=gq;
BO¢
rev¥ = Valiate the m_pFilterArrayli);
TF revV is false {
IF PartInitial{ QuantificrCount -2 - 1) Break:
revy =TRUE; i=0;
} ELSE i++;
}YWHILE {i < QuantifierCount —1) && (revV is TRUE)
Construct a record, append it to the result.
/fRead 0™ Quantifier Block*s next record to buf¥er;
H1f return value is NULL
{F Partlaitial{ 3} break;

24

With the iteratar technique in Volcana query model specified
in [4], we implemented the methods open, next, close at every
execute node. Every node’s filter is a Conjunctive nermal form,
which mixed with the spatial predicate and non-spatiat predicate,
in the terminate execute node, we gather the conjunctive normal
form like filter which the storage manager can deal with, this
part is sent 1o the storage manager, if there is spatial predicate,
we gather the MBR information from the predicate, and
translate the i into the arithmetic type, with the logical
operation windows query or digjoint query {called in the Spatial
Query), we can say this is the filter step in the muiti-siep
technigue in spatial query, and the retnained filter will he
evaluated by the expression evaluate procedure.

For, we have adopted the bushy tree like plan, so every node
15 betong 1o non-stop node of stop node. non-stop means il need
not store the intermediate result at this node, the non-stop node
means we need store the intermediate result at this node, this
may be resulted of the aggregate. group by, duplicate remove.
But in another situation, the count(ficld) has been pushed just
after the field's original related execute box the last execute
node, this strategy can reduce the thne spend or large aggregate
operation, as a result, every node will have a factor, indicate that
the oytput result repeat limes, or this will result in a bug, and
produce the uncorrected result.

open-filter
nexi-filter
close-filter

open-filescan
next-filescan

filler close-filescan
nene-stapisiop

repaat factor

filter {none)

Figure 5. Two operators in a Volcano query plan

4. Conclusions and Future Research

In this paper, weve discussed the implemented query
evaluation plan vsed in the SDE. We proposed the moedels, sieps,
methods and principles for query evaluation plan based on the
query graph (QGM) and Conjunctive normal form; at last. we
implemented pur own evaluation plan in the SDE, which has the
full query capabilities of SQL on the non-spatial part of the
database while being tightly integrated with the spatial part, the
proposed multi way join algorithm may be attractive.

About the future research, we'll support subquery, and apply
more works on query rewrite optimization and rule based plan
optimization.

REFERENCES
[1] M. Astrahan et al, System R: A Relational Approach to
Data Base Management, ACM TODS, pp.97-137, 1976

21

T.¥.Cliff Leung etc.. Query Rewrite Optimization rules in
IBM DB2 Universal Database, Readings In Database
System 3™ Edition, ppl53

[3]
(4]
(5]

Open GIS, OpenGIS Simple Features Specification for
SQL R1.0, htip:/fwww opengis.org/techno/apecs htm

Geetz Graefe, Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2), pp.73, 1993

P. Griffiths Selinger etc., Access Path Selection in a
Relational Database Management System, ACM SIGMOD
79, pp.23. 1979

Peter Gulutzan and Trudy Pelzer, SQL-99 Complete,
Really, R&D Books, Lawrence, Kansas 66046

(6]
7]
i8]

Ralf Hartmut Guting, An Introduction to Spatiat Database
Systems, VLDB Vol.3 No.4, pp.357-399, 1994.

Inderpal S. Mumick etc,, Implementation of Magic-sets in
a Relational Daabase System, ACM SIGMOD, pp.103.
1994

