Simplified Predicate Locking Scheme for
Concurrency Control on R-tree

"Ying Xia', Kee-Wook Rim? Jae-Dong Lee’. Hae-Young Bae'
'Dept. of Computer Science & Engineering, Inha University
Dept. of Industrial Engineering, Sunmoon University
Dept. of Computer Science, Dankook University
2199213 1@inhavision.inha.ac.kr

Abstract

Despite extensive research on R-trees, most of the proposed schemes have not been integrated into existing DBMS due
10 the lack of protocol to provide consistency in concurrent environment, R-link tree is an acceptable data structure to deal
with this issue, but still not enough. In this paper, we focus on a simplified predicate locking mechanism based on R-link
tree for concurrency control and phantom protection. An in-memory operation control list (OCList) used to suspend some
conflicting operations is designed here. The main features of this approach are (1} it can be implemented easily and do not
need any extra information. (2) Only-one-lock is held when descending R-tree even when node split happens, while lock-
coupling scheme is performed when ascending. No deadlocks are possible. (3) Searches and insertions are not
unnecessarily restricted. (4) Insert and Delete phantom in R-link tree are avoided through beforehand predication.

1 Introduction

As one of the most important multidimensional data
structures, a several variants of R-trees has been proposed for a
rather long time, but most of them have not been used in
existing DBMS. The main reason is the lack of applicable
protocol to guarantee the consistency in the presence of
concurrent operations. Some proposed schemes are too
complex and require special definitions on storage manager
[L.8].

Concurrency controd on R-tree is much more difficult than on
B-trec variants. Some well-designed concutrency control
schemes such as ARIES/IM are not suitable for
multidimensional indexing {1,4]. R-link tree is an acceptable
data structure to deal with this issue but it is still not enough to
resolve all the problems appeared during concurrent executions.
1} It self has some restrictions and some special cases are not
considered in details, such as multiple insertions, and delete
algorithms. 2) 1t cannot resolve the phantom problem {3,8]. Our
scheme is based on R-link tre¢ structure, at the same time, a
simplified predicate locking approach using an in-memory
operation control list (OCList) is designed to detay only
conflicting operations, and resolve phantom problems.

The rest of the paper is organized as follows. Section 2
reviews the related work ahout R-link tree. Qur supporting data
structure OCList is designed in Section 3. In Section 4 we
discuss the refative operation algorithms based on R-link tree
and OCList. At last, we show performance analysis and
conclusions.

2 Related Work
R-link iree based on R-trec and link technique, is proposed

by Leman and Yao in [3). Extra information are designed in this
structure, 1} each node is assigned a LSN {Logical Sequence

" This Research is supported by Ministry of Information and
Communication under work of university S/W research center.

16

Number) to determine whether an unfinished split exists during
descending and thus decide how to move through the tree. 2) A
global generation counter for the whole tree and a generation
number (gNum) of each node determine whether a node is
deleted or not. 3} A Rightlink of each node is used for
compensating unfinished node splits. 4) Each entry of intemal
nodes keeps the LSN of associated child node by ChildLSN
[3.8]. See Figure 1.

Whenever a node splits, the new right sibling is assigned the
old node’s LSN and the old nede receives a new greater LSN.
We can always find the child node with the same LSN as
ChildLLSN in an eniry of parent node by following right-link.
For ¢ach split, afier upward propagating, a corresponding entry
can be found in parent level even if splits have also happened
on parent nodes [3,8].

When a node is deleted, the tree global counter is
incremented and the new value is assigned to the deleted node.
Before descending, remember the global generation counter
when get the pointer of one node and compare it to the
generation number of that node when finally visiting it, a higher
number in that node indicates that it must have been removed
by other operations after the pointer was read. In this case.
descending operation has to be restarted from the lowest valid
ancestor node [3].

_';'lt%ﬂﬂt- Base table LSNra]Righet ik
- Index oumber MER AR
25 & Global generation counter | Chadi SN [——-- CldI SN
! / "
{An exampe of index definition) {An interval node of Relink trec)
Y Wzl
S 41
4 2 I

A
unfimshed spiit

(Figure 1. A possible State of a Subsection of R-link Tree)

20015 &=y atsts] §

st iEwA Vol 28, No. 1

During tree descendent, only one node needs to be locked at
any time. But during tree ascent, lock-coupling scheme is used
to avoid upward propagated information are overtaken by other
update operations and remaining the tree structure inconsistent.
No deadlock is possible by using this locking strategy {3].

3 Supporting data structure OCList

There arc at least two reasons that why we need an aid
structure for concurrency control, Firstly, R-link tree allows
multiple insertions are executed concurrenily, but it does not
overcome phantom [3]. When an insertion commits, the new
key might be visible to a re-scan. Secondly, as for deletion,
finding leaf node which includes the key we want to delete is
not as simple as finding proper leaf node to insert, because the
geometrically optimal leaf for insertion has only one, but the
leaf nodes which intersect the deleted key might be more than
one. Before the proper path from root to teaf been found, no
structure modifications are expected.

The extent of concurrent level and the algorithm complexity
is a tradeoff relation. Since we choice to implement a simplified
scheme, some conflicting operations from different transactions
need to keep waiting. The OCList is a global in-memory array
structure designed to serialize all conflict operations, We give
an example based on three concurrent transactions and show a
possible state of OCList in Figure 2.

Te ol L 1 L 1.
" Start fngent Insert Search Commit
(9.9,11,11) (5,5.8.8)(0,0,10,10}

L 1 1 I
T Start Search et Commit
(20,20,30,30) (8.8,12,12)
T St Delete Insert Commit
(669.9)(224.4)

{Three concurvent tramsctions)

TI. Insert, (3.8.12,12)....
T2. Dedete, (6,6.9.9)....

(Suspended operations)

T, Sarch, (0,0, 10, 10), .,
T1. Seach, {20, 20, 30, 30). .
TN, brsens, { 5, 5. 8,8},

O, Teeacl (9,9, 11, 1), ..

(Operaction Control List)

(Figure 2. A Possible State of Operation Control List}

Before an operation is performed, first lock OCList and
check whether this operation is conflict with any other active
ones. [f not, a corresponding element includes transaction
identify, operation type, region or key, and start time will be
added in before OCList released. Otherwise, this operation is
delayed.

When this operation committed, lock OCList again, and
release it after removing the relative element. The start time
field is used to assure that no any operations which has
canceled due to transaction aborts are still exist in OCList. If
some elements have exceeded the response time limitation, they
will be deleted whenever any other operation checks OCList.

17

4 Concurrent operation algorithms using OCList

Basic algorithms about R-link trecs can be consuited in
[3.8]. In this paper, we focus on control approaches on OCList
when search, insert, and delete are requested.

4.5 Search

According to the general usage of applications, given a query
window and a query predication, the results will be processed
through cursor one by one. So search algotithm includes
FindFirst and FindNext functions, both of them retumn one
record every time, One FindFirst and a serial of FindNext are
invoked during search until thére are no any other records
satisfied. Checking OCList and adding element are performed
at the beginning of FindFirst. Just like algorithm in R-link tree,
a stack is used to keep ail yel-to-be visited node, and
descending tree is performed according to the rule of R-link
tree, When search is finished, the relative operation ¢lement is
deleted from OCList.

To avoiding phantom, there should no any insertions (or
deletions) with a key falling in the new search rectangle are still
active, otherwise uncommitted insertion {or deletion) might
make query results different when re-scan. So a search request
would check the OCList, if any uncommitted insertion keys falt
in the query range, the search will suspend itself and keep
rechecking. When all colliding insertion {or .deleteion)
committed, the search will be activated. Figure 3 shows the
pseudo-code of OCList checking for search,

FindFirst{TransID,MBR)/
*check®/
Lock(OCList)
IF {no keys of insertion or deletion of other transactions
fall in MBR) THEN
Add element (Trans,Search, MBR...) in OCList
Release OCList
ELSE
Release OCList
Sleep and Recheck
/*Find the first one*/
IF (FindFirst{TransID,MBR)==FALSE) THEN
Lock{OCList}
Remove element (Trans,Search, MBR,..) from OCList
Release{OCList)

FindNext(TransID,MBR)*/

/*Find next onc*/

IF (FindNext{Trans[D,MBR)}=FALSE) THEN
Lock(OCList)
Remove element (Trans,Search, MBR) from OCList
Retease{OCList)

{Figure 3. Pseudo-Code for OCList Checking of Search)

42 Insert

For a given key and record identify, we need to |ocate the
geometricalty optimal leaf and remember the access path first.
After insert new key into leaf, we must propagate the changes
upward until a parent nod¢ does not need to be changed. 1f the
leaf was split, a new entry should be installed in the parent node,
it is also full, noede split recursively performed until a node with
enough free space arrived or alternatively split the root,

According to the lock scheme in R-link tree, descending in
R-link tree only need lock one node, while ascending the tree
lock-couple will be performed. This completely avoid deadlock,

20015 3R W ats] B shgen

b3E

p=]
& =3

H

Voi. 28, No. 1

and allow concurrently multiple insertions.

But insertion should be suspended if the new key falls in the
specified ranges of any active searches in the system, otherwise
this uncommitted insertion might cause phantom. Before insert,
OCList is checked to confirm that there is no any colliding
active search, and no deletion is finding leaf. 1f so, add an
element about this insertion into OCList. Afler insertion
committed, remove the relative element.

4.3 Delete

Similar with Insert, deletion needs to first find the leaf node
in which includes the key we want to delete and keep the access
path, then delete it and propagate the changed MBR upward.
But find leaf node and remember the path for delete is much
more difficult than for insert, because if when we amived a leaf
but the key fs not in there, we have to back up to parent level
and continue finding. To let our algorithm simple, before find
the proper leaf node, we don’t wish the tree structure modified
by any other operations.

In our approach, deletion is somewhat pessimistic. Finding
leaf node is only performed after confirm that no uncommitted
insertions or deletions and intersected active search still exist
by checking QCList and add relative information in it. After
deletion committed, remove the relevant clement.

4.4 Update

Update is modeled by the deletion of the original object
followed by the insertion of the mew object. We allow the
indexing attributes been modified, and even new object with the
same key as the original one will be relocated in the tree.

5 Performance

Performance show in [3] only performs comparisons about
insert and search operations, no delete operations are
considered. So we compare the performance of the proposed
scheme with R-tree which allowing only multiple searches in
terms of throughput and response time when considering search,
insertion and deletion. Each transaction is a set of 100600
accessing operations in which 40% are searches, 30% are
insertions, and the others are deletions. And we also compare
these two terms with R-link tree when only apply 50% searches
and 50% insertions in one transaction. We experimented with
two-dimensional map data. The platform is [ntel Pentivm 760,
256MB RAM, 20GB hard disk, Windows 2000. As Figure 4.1
depicts, the experimental results show that our proposed
scheme achieves better performance gains on both response
time and throughput over R-tree on the average when all kinds
of operations are included in a transaction. And as Figure 4.2
shows, this scheme gains similar performance with R-link tree
when apply only insertions and searches by using simple
algorithms and more details are considered.

6 Conclusions

By using this strategy, 1) the average throughput is keep
higher and rather constant as the number of transactions
increasing. 2) The average response time is shorter than that of
R-tree, which means we can serve more users at a means
response level. And 3) the response time values are distributed

18

in a narrow value range than that of R-iree, which means
transactions do not block each other for a lang time,

Algorithms proposed in this paper are easy 1o implement, but
since delete operations in our approach is a little pessimistic,
this scheme is especially suitable for applications with less
deletions and updates. And because OCList is an in-memory
structure, it is unlikely to keep too much elements of
uncommitted update operations for long update wansactions
due to the space limitation.

Throughpt i .) Reponse inme(wx: Armx.)

1 .
—

[T T e — o sk ™ R /‘f }

- si- e~= Our gppruch / '

! '

j- \\ i /// !

i i
- — Raree - zi— - -

2f 77T Chursppech 1= - - ¢

PR T 1

1 1 1 LI]
2 4 6 K lDjzve
Concurent Irssaghinas

T N Y T
24 68 W24
Comcurtent iransaction

{Figure 4.1 Average throughput and response time compare
with R-tree when search, insert and delete are applied)

Itwoughpuiitrana fes) Response Umeace. Arans)

ak /h e T - ﬁ;_ — Rdink e :

1/

ﬁ"/ 'l!'

6/ ’L el l

AF = Rimkue ‘L/ i

2 ot Oweppmech 1} |
T [

1 1 1 LI
oA s & foz s
Concurreny iransactions

[S B R |
774 6 R 160214
Cuncurrent (ransacisons

(Figure 4.2 Average throughput and response time compare
with R-Link tree when search and insert are applied)

References

[1] K.Chakrabarti and S.Mechrotra. Dynamic Granular
Locking Approach to Phantom Protection in R-trees. In Proc. of
International Conf. on Data Engingering. Feb, 1998

[2) A.Gutiman. A Dynamic Index Structure for Spatial
Searching. In ACM SIGMOD Conf. 1984

[3] M.Komacker and D.Banks, High-Concurrency in R-trees.
In Proc, 21™ Internationa) conference on VLDB. 1995

(4] PL.Leman and §.8.Yao. Efficient Locking for Concurrent
Operation on B-Trees, ACM TODS, 1981

[5] C.Mohan. ARIES/KVL: Akey-Value Locking Methiod for
Concurrency Control of Multiaction Transactions Operationg
on B-Tree Indexes. In IBM Research Report, 1989

[6) C.Mohan and F.Levine. ARIES/M: An Efficient and High
Concurrency Index Management Method Using Write-Ahead
Logging. In IBM Research Report, 1989

[7] V.Ng and T.Kameda. Concurrent Accesses to R-trees. In
Proc. of Symposium on Large Spatial Database , 1993

[8] S.Song. S.H.Lee, 15.Yoo and J.S.Lee. An Efficient
Concurrency Control Algorithm for High-Dimensional Index
Structures. In Proceedings of the International Confon
Information Intelligence and Systems. 1999

[9] T.Sellis, N.Roussopoulos and C.Faloutsos.
Dynamic Index for Multidimensional Objects.
International Conf. On VLDB, 1987

The R+-tree: A
in Proc, j3%

