한국생물공학회:학술대회논문집
- 2000.11a
- /
- Pages.52-55
- /
- 2000
Biosensing interfaces based on the dendrimer-underlying layer on gold
- Published : 2000.11.09
Abstract
Structually organized mono- and multilayers were developed on gold for the catalytic and affinity biosensing using hyper-branched dendrimers. For the catalytic biosensing interface, a new approach to construct a multilayered enzyme film on the electrode surface was developed. The film was prepared by layer-by-layer depositions of dendrimers and periodate-oxidized glucose oxidase. The voltammograms obtained from the GOx/dendrimer multilayered electrodes revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers. From the analysis of voltammetric and ellipsometric signals, the coverage of active enzyme per layer during the layering steps was estimated, demonstrating the spatially-ordered multilayer formation. As an extension of the study, dendrimers having various degrees of ferrocenyl modification were prepared and used. The resulting electrodes were electrochemically characterized, and the density of ferrocenyl groups, active enzyme coverage, and sensitivity were estimated. For the affinity-sensing surrface, a biosensor system based on avidin-biotin interaction was developed. As the building block of affinity monolayer, G4 dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. And the biotinylated and electroactive dendritic monolayer was used for the affinity-sensing surface interacting with avidin. Electrochemical characterization of the resulting biosensor was conducted using free enzyme in electrolyte in terms of degree of surface coverage with avidin and subsequent surface shielding.
Keywords