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Abstract

The paper presents the dynamic instability of a disc brake pad subjected to distributed friction forces.
A brake pad can be modeled as a beam with two translational springs. The study of this prototypical
model is intended to provide a fundamental understanding of disc brake pad instabilities. Governing
equations of motion are derived form energy expressions and their corresponding solutions are obtained

by employing the finite element method.

The critical distributed friction force and the instability regions are demonstrated by changing two
translational spring constants. Finally, the changes of cigen-frequencies of a beam determining instability
types are investigated for various combinations of two spring constants.

1. Introduction

The brake is a mechanical device that produces
the braking forces using dry friction. The noise
generated in the brake system of cars is considered
as an unstable vibration phenomenon due to friction
forces. It has been an important technical task how
to reduce the noise produced in the disc brake
system that is widely employed in both airplanes and
automobiles.

In general, the governing equation for the vibration
of a disc bake pad under the excitation of a rotating
disc is known to be basically the same as that for a
beam model under distributed friction forces. Where,
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the distributed friction forces present the distributed
follower forces in the tangential direction of a beam.
These forces are obtained by multiplying the normal
contacting force due to the brake pressure by the
friction coefficient.

The dynamic stability problem on such a beam
model with distributed follower forces has been
studied as a nonconservative elastic stability problem
by many investigators."™

LeipholZ” presented both the dynamic stability and
the critical distributed friction forces on a beam
subjected to the distributed follower forces due to
distributed friction forces for four different boundary
conditions such as pinpin, clampedpin, clamped-
clamped, and clamped-free conditions. He found that the
flutter-type instability occurs for the clamped-free case
while the divergence-type occurs for three other cases.

The study on the dynamic stability of a beam
under distributed follower forces presented above
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However, the strip of pad has been treated in
many studies as a beam with various boundary
conditions since some experiments on the disc brake
system showed that the brake pad and the associated
boundary conditions have a great influence on the
brake noise.*>”

Richmond and his colleagues’®™ developed the
computer program for the design of a disc brake
pad.  Hulten and Flint” studied the disc brake
squeal using the assumed modes method.

Recently, Kang and Tan"” wused Galerkin s
method to investigate the dynamic stability of the
Euler-Bemoulli beam by regarding the friction force
acting on the brake pad as the pulsating distributed
follower force. As presented above, the dynamic
stability of a disc brake pad has been mostly studied
by employing a beam model with conventional
boundary conditions subjected to either uniformly or
pulsating distributed friction forces.

In this paper, however, a beam with -elastic
supports are used since the brake parts such as
caliper - piston, "caliper, and supporting bracket are
regarded as translational springs. The dynamic stability
of the beam under the uniformly distributed friction
forces is studied using the finite element method.

]

2. Theoretical Analyses

2.1 Mathematical model

Brake pad

Fig. 1 Schematic diagram of disc brake and
pad system.

The dynamic stability of a brake pad in the disc
brake can be simply studied by modeling the disc
brake system as a beam with spring supports at both
ends subjected to the uniformly distributed follower
forces.

Figure 1 is the schematic diagram of the disc
brake system. Figure 2 depicts the simplified
mathematical model of the system.

Distributed
follower force
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Fig. 2 A Mathematical model of an elastically
restrained beam under distributed friction

forces.
2.2 Energy expression
The equation of motion of the model shown in

Figure 1 can be obtained from the following energy
expression.
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Equation (1) represents the kinetic energy due to
the translational movement of the beam. The first
term of Equation (2) represents the potential energy
of the beam due to bending, the second and the



third terms represent the potential energy of the left
and the right springs due to deflection, respectively.

Equations (3) and (4) represent the conservative
work and the nonconservative virtual work done by
the distributed friction forces, respectively. Where,
subscripts x and t represent the differentiation with
respect to position and time, respectively.

Substituting Equations (1)-(4) into the extended
Hamilton's principle gives
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Separating variables and rearranging yields
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2.3 Finite element model

Since it is not easy to find the exact solution of
Equation (6), the beam is divided into N eclements as
shown in Figure 3 to obtain the discretized equations
of Equation (6).

1st node element number

R

node number
%
L

x=L

(N+1)th node

(

1 A2

Fig. 3 A finite element mode! for considered system.

Introducing the following nondimensional

coordinates for the calculation convenience
¥=x=(i=D, =7, &= ™
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Multiplying both sides of Equation (8) by EI//
and assuming the solution in the form of
KED=nEe™ )

yields
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where, the nondimensional parameters are
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In Equation (11), @
F is the distributed follower force parameter, K,

is the frequency parameter,

and K, are the translational spring constant at left
and right ends, respectively. Combining Equation
(10) for N elements gives the following eigenvalue

equation in matrix form.

{IK] =M U= {0} (12)

3. Numerical Analyses and Results

Numerical analyses were performed based on the
theoretical development presented above. In order to
check the accuracy of numerical results obtained in
the study, a comparison was conducted with the
results in references{3] for the case of simply
supported at both ends. The differences between two
results are within 0.018% when 20 elements are used
for the present study.

Figure 4 shows both the critical distributed friction
force and the instability type for various right spring
constants, K,, when the left spring constant, K;=1,

2, 5, 10, 12.
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As shown in the figure, the critical distributed
friction force increases as the spring constant K,
increases. The transition of the instability type from
a flutter to a divergence occurs as K, increases for

each value of K.
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Fig. 4 Instability transitions depending on the

spring stiffness
(K,=1, 2, 5, 10, 12 and K,).
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Fig. 5 Flutter instabilities depending on the
spring stiffness
(K;=13, 20. 38 and K,).

Figare 5 presents the critical distributed friction
forces for various valies of K, when K,=13, 20,
38. In this case, only the flutter occurs for all
values of K, And also, the critical distributed
friction force decreases at first and increases later as
the spring constant K, increases for a fixed value
of K,.

Meanwhile, the spring stiffness *K,>10° can be
considered as a rigid support since the critical
distributed friction force changes little with K,

above 10°.
Figure 6 presents the critical distributed friction

forces for various values of K, when K;=39, 40,
41. The transition from a flutter to a divergence
occurs as K, increases when K;=39 and 40.

For K,=41, only the divergence occurs for all
K,, and the
increases as the spring constant K, increases for a
fixed value of K,.
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Fig. 6 Instability transitions depending on the
spring stiffness
(K1=39, 40, 41 and Kz)
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Fig. 7 Variations of eigen frequencies with
spring stiffness
(Kl=l ; K2=1 and 2)

Figure 7 shows the eigen-frequencies for various
distributed friction forces when K;=1, and Ki=1
and 2. The first and the second eigen-frequencies
meet each other at the critical value of F_/x*
=0.056 for both K, and K, equal to 1. The
instability type 1is the flutter. However, the
divergence occurs when the first -eigen-frequency
becomes zero at the critical value of F/7°=0.102

for K;=1 and K,=2.
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Figure 8 presents the results when K,=2 and 3 Figure 9 shows the results when K,=6 and 7 for
for K,=2. The critical values of the dimensionless  K;=5. The critical values of the dimensionless

distributed friction force, F.,/x°, are 0.104 and 0.203.  distributed friction force, F/x are 0.286 and 0.507.

4 15
., LK = =
ie] L —— 1 K,=12,K,=239
e o K =12, K, =240
34 124 "~
g & S
g 2 104 \\
o
g 2 E) s
g ] ; g \\\
% : < s Y
5 1 : AN g 4 kk‘_‘-kk““‘—hh‘_._.&._
w - : D ~ ‘“‘*&‘L_._._\k -
0.104 \ Divergence \ w 2 Flutter Divergence !
H 0.203 \ 7 1.168 1.216 13
: 'Y — :
§ 3 I i
° T 3 v ' . ° T T T . T \
0.00 0.05 010 015 0.20 0.0 0.2 04 0.6 08 1.0 12
Distributed friction force, Fir® Distributed friction force, Fix

Fig. 8 Variations of eigen frequencies with Fig. 11 Variations of eigen frequencies with

spring stiffness spring stiffness
(K,=2; K,=2 and 3). (K,=12; K,=239 and 240).
64— —
e et K,=39, K,=307
54 T —— 1 K,=39, K,=308
N
el w
£ . T 2
2 . . o
2 ) S 4
§ b= — S g
g L . T - <3
& N £
§ 2 R <
5 Flutter ; g :
w i i & :
14 0.286 : °"e;95§',‘°" \ iy 4 Flutter Divergence!
: - 1.80 1925
| \ T
0 . T “y . 3 o T T T T
0.0 8] 02 0.3 0.4 0.5 0.0 0.4 08 1.2 18 20
Distributed friction force, Fix’ Distributed friction force, Fix’
Fig. 9 Variations of eigen frequencies with Fig. 12 Variations of eigen frequencies with
spring stiffness spring stiffness
(Ky=5; K;,=6 and 7). (K;=39; K;=307 and 308).
12 15.0
i T
e,
G 125 N
B b
10 e Bae'e
= w \\
¢ ol \\ g 100 ——:K,=40, K,=38 Ny
e SSe g a1 K,=40, K,=39
£, .
h o otk st s .
g SN \’\ g —— Rimnare L . W
< ] IR SO S £ 5.0 -
l% Flutter Diverggﬂ:&:‘\“‘ I%! v Flutter Dive:gseznzce \\
: 5 1.78 . :
21 0.94 1014 0\ T~ ~._
\f\‘\ T h ‘
o 3 0.0 T r T v T T
0.0 0'2 0'4 0?6 DIB 170 0.0 0.3 0.6 0.9 12 15 18
Distributed friction force, Ffx® Distributed friction force, Fix'

Fig. 10 Variations of eigen frequencies with
spring stiffness

Fig. 13 Variations of eigen frequencies with
spring stiffness
(Ky=10; K;=34 and 35). (K;=40 ; K,=38 and 39).
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Figures 10 through 13 present the transition of the
instability type from a flutter to a divergence for a
fixed value of K, as shown in figures 7 and 8. As
can be seen in these figures, a slight change of K,
has a great influence on the transition of the
instability type.

4. Conclusions

The dynamic stability of a disc brake pad was
investigated by assuming the system as the beam
supported elastically subjected to the uniformly
distributed friction forces. The following results were
obtained. ‘

1. The tranmsition of the instability type from a
flutter to a divergence occurs as K, increases for
K <12 and 39 <K, ,<40. However, only the flutter
occurs for all values of K, when 13 <K,<38. And
K, =41
therefore, found that the spring constant has a great
influence on both the instability type and the critical
distributed friction force.

2. The critical distributed follower friction force
increases as the spring conmstant K, increases for a

only the divergence occurs for It is,

fixed value of K,.
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