Hollow Beam Atom Tunnel

속 빈 레이저 빔을 이용한 원자 가이드

  • 송연호 (서울대학교, 근접장 이용 극한 광기술 연구단)
  • Published : 2000.02.01

Abstract

One of the more promising proposals for guiding and focusing neutral atoms involves dark hollow laser beams. When the frequency of the laser is detuned to the blue of resonance, the dipole force the atoms feel in the light confines them to the dark core where the atoms can be transported with minimal interaction with the light. The ability of the all-light atom guides to transport large number of ultracold atoms for long distances without physical walls leads to the possibility of a versatile tool for atom lithography, atom interferometry, atomic spectroscopy as well as for transporting and manipulating Bose-Einstein condensates. Furthermore since the atoms transported in all-light atom guides do not come into contact with matter, they can in principle be used to transport antimatter as well. The ability to vary the core size of the hollow beam makes the all-light atom guide potentially useful for focusing neutral atoms. The atoms could be focused as tight as the core size of the hollow beam at its waist. This new focusing scheme, called the atom funnel, would not show spherical and chromatic aberrations that conventional harmonic focusing suffers from. (omitted)

Keywords