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ABSTRACT

The higher stage of development of plant factory is discussed, that involves
technologies such as process control for the plant growth environment, mechanization for
material handling, system control for production and computer applications.

Further, the advantages of a plant factory include production stabilization, higher
production efficiency, and better quality management of products through a shortened
growing period, better conditions, lower labor requirements, and easier application of
industrial concepts.

Finally, to realize the ultimate plant factory using both solar and artificial light, the
intelligent approach from control engineering, physiological ecology and artificial
intelligence(AI) may be inevitable and introduced based on some works done by authors.
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INTRODUCTION

There is a strong demand for technological breakthrough in development of
alternative food production systems. Recent rapid progress of the world's industries has
been brought about by the implementation of such technologies as systems modeling of
the production process with advanced information processing, and the automation and
rationalization of production lines.

Agriculture has, however, not benefited from many of these advanced technologies
until very recently. Modeling complex agricultural systems is a very difficult task.
Furthermore, the complicated models that have been developed have been treated
analytically and have not provided much appreciable benefit. The only notable
technological achievements for the basic agricultural infrastructure have been in irrigation
and drainage technology and the advances made in engineering machinery to reduce labor
and increase production. Otherwise, the application of advanced technology to agriculture
has stagnated. Today, the promise of more efficient farming through the application of
computers and automation is as elusive as ever. In the horticultural sector, the
implementation of information technology (computer applications) and automation is
now being rapidly implemented in greenhouses.

It has been 20 years since some of Japanese researchers started their works on
development of plant factory which is much more advanced than greenhouse.

The steady progress in development of plant factory is being made as concerned
with the facts such the shortage of farm labors, the environmental issues, the energy
issues, the food shortage, the IT advancement and the agricultural ethics in the 21st
Century(Takatsuji: 1986, Murase et al.:2000).

PLANT FACTORY
More than 50 years ago, an epoch-making experiment was done by Prof. Went at
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California Institute of Technology, using phytotron, where remarkably positive effect of
temperature optimization on tomato growth was revealed. The result suggested us that the
optimization for plant growth had been never made clear only under the natural
environment, which would be so-called one of the paradigm shifts in plant science.
Since then, a lot of phytotrons for the creation of micro-meteorological environment had
been constructed to find these optimization. It was, however, too difficult to simulate
the these conditions in the phytotron. Almost all approaches were unsuccessful.

In 1970, a plant growth system consisting of systematically integrated growth
chambers was used to demonstrate that plant growth can be significantly improved by
applying optimum growth conditions in terms of the limited environmental factors such
as temperature, relative humidity, light intensity and CO2 gas concentration. Those
scientific achievements in USA have motivated the early stage of development of closed
plant growing system with controlled artificial environment. The research and
development was extended’to the first stage of plant factory, so-called fully controlled
plant factory, that involved technologies such as process control for the plant growth
environment, system control for production and computer applications.

On the contrary, it may be noted that the highly advanced greenhouses in the
northern European countries as in Netherlands and Belgium should be recognized as plant
factory with both solar and artificial light. That may be called as greenhouse type plant
Jactory. Recently these plant factory also increases in Mazzaron, Murusia, Spain.

Thus, there are two types of plant factory. One is a greenhouse type plant factory
which is heavily equipped with sophisticated environment control system, machines,
instrumentation, computers and artificial light source as a supplement during occasions of
low solar radiation (Fig.1). The other is a closed fully controlled plant growing
factory which does not utilize solar radiation (Fig. 2). Both plant factories are now
expected as the epoch-making system for alternative food production.

Fig. 1 Greenhouse type plant factory. Fig. 2 Closed fully controlled plant factory.

A precise definition of a plant factory has not to be established yet. In a broad
sense, a plant factory is defined as "a production system in which plants are under
continuous production control throughout the growth period until the harvest". A
narrow definition is "all-year-round plant cultivation system in a completely artificial
environment"(Murase et al.:2000).

GREENHOUSE TYPE PLANT FACTORY
It may be clear that many of the large scale greenhouses extensively used in northern
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European countries should be called as a kind of plant factories. They are intensively
automated and computerized.

The following two problems have to be solved in order to optimize operation of these
greenhouse type plant factory;

1) plant response against environmental conditions varied largely with climatic
conditions has to be analyzed,

2) optimum cultivation technique under greenhouse type plant factory for individual
crop must be developed according to the increase of crop varieties grown in the
greenhouse type plant factory.

The dynamic response of plant physiological ecology against environmental stress
must be clarified using multi dimensional measurements including infra-red image
analysis. Utilizing those information obtained by bio-instrumentation could reduce energy
consumption and running cost which lead to the study of the environmentaly friendly
control system.

SPA FOR PLANT FACTORY IN THE NEXT GENERATION

In general, the physiological status of a plant during cultivation varies with time and is
affected significantly by environmental factors. For more effective control of such a
system, it is efficient to monitor the physiological status of the plant. Actually,
measurement and identification of plant responses for optimal control of the environment
based on plant responses are necessary. This is called "the speaking plant approach
(SPA)" for plants during cultivation (Hashimoto.:1980, 1989, Sigrimis et al.:2000).

Advancement of the SPA was particularly useful for solving the second problem
mentioned in the previous section in terms of handling vague information provided by
plants and knowledge accumulated by human in the environment control for the
greenhouse type plant factory. Authors(Hashimoto et al.: 1984a, 1984b, 1989 and 1992)
have attempted an extensive study on SPA in conjunction with optimization of
environment control of greenhouse type plant factory. The non-linear photosynthetic rate
as affected by radiation was identified using spectral analysis for frequency-domain and
the least square analysis for time-domain. Further, expert system was employed for
determining the set point of nutrient solution for tomato hydroponics. It was found that
the genetic algorithms, neural networks(Murase et al.: 1991a, 1991b, Hashimot0:1997),
fuzzy logics and other bio-system derived algorithms (Murase:1998) are particularly
useful for implementing SPA.

EXAMPLE FROM THE SYSTEM CONTROL *erimete & Hashimoto:2000)
1 Speaking plant approach(SPA)-based control system

For the greenhouse type plant factory, it is essential to control the environment
optimally, taking the physiological status of the plant into consideration. This has been
explored as a “speaking plant approach (SPA)” mentioned above.

Fig. 3 shows the schematic diagram of speaking plant-based control system for a
plant production process grown in hydroponics. In general, plant control systems can be
complex, large-scale systems involving many management tasks. Here, a decentralized
computer control system with a hierarchical structure aimed at effectively using existing
computers is proposed. It consists of three computers: a computer (I) for controlling the
environment in the greenhouse, a computer (II) for determining the optimal setpoint of
the environment and a computer (III) for design and diagnosis. All computers used in this
system (decentralized computer system) are existing ones that were already in use. It is
thereforc economical from an investment point of view. They are connected to a local



area network (LAN) and communicate with each other. From the SPA viewpoint,
physiological responses of the plant are measured using sensors and transferred to
computers II and III where the optimal setpoints of the environment are determined using
control algorithms on the plant response and environmental data.
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Fig.3 Schematic diagram of the SPA-based Fig.4 Hierarchical intelligent control
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Tomato plants (Lycopersicon esculentum Mill. cv. Momotaro) were used in the
hydroponic optimization experiment and tomato fruits (mature green ones) in the
optimization of storage experiment.

2 Hierarchical structure in the decision system

From an energy saving point of view, it is not always necessary to apply on-line
optimal control to the plant production system through all the growth stages. The
alternative use of two decision systems are presented: an elaborate on-line decision
system that was only applied to the plants during important growth stages, and a rough
off-line decision system that was applied to the plants throughout growth. This
combination may be effective in realizing the optimization of the plant production
process. A hierarchical control system seems to be effective for implementing these tasks.

Fig. 4 shows the block diagram of a “speaking plant”-based control system with a
hierarchical structure for decision-making. It consists of two decision systems, an expert
system (computer III) and an optimizer (computer II), for determining the optimal
setpoints of the environment, and a feedback control system (computer I) for maintaining
the environment at the optirmal setpoints (Morimoto et al.:1995, :1997a, :1997b).

In this study, two decision systems, an expert system and an optimizer, are used for
optimization. The expert system is an off-line decision system which provides suitable
environmental setpoints throughout growth over the long-term. Usually, the cultivation
processes are adequately (though not optimally) controlled with the instructions of the
expert system. The setpoints from the expert system were not scientifically optimal and is
often simple and rough. Therefore, when plants reach important growth stages, the
optimizer takes over for more precise (optimal) control. In this case, the controller
replaces the expert system with the optimizer, and the optimizer only has priority over the
expert system during important growth stages. The optimizer, consisting of neural
networks and genetic algorithms, is an on-line decision system. It determines the
optimal environmental setpoints for short-term control. In this method, plant responses,
affected by environmental factors, are first identified using neural networks, then the
optimal environmental setpoints are searched for through simulations of the identified



neural-network model using genetic algorithms.

Two decision systems, the expert system and the optimizer, are used alternatively
according to the stage of plant growth. The change of controller is based on the
judgments of both a skilled grower and the expert system.

3 Optimization problems in the hydroponic cultivation process

Hydroponic culture techniques are suitable for the flexible control of the root-zone
environment of plants, and for mechanization of cultivation processes. The technique
behind good fruit yields in tomato cultivation is to keep an optimal balance between
vegetative growth (e.g., root, stem and leaf growth) and reproductive growth (e.g., flower
and fruit growth). In hydroponic cultivation, however, vegetative growth becomes more
active than reproductive growth because the roots of plants always exist in a suitable
environment for the uptake of nutrient ions. Active vegetative growth induces poor
reproductive growth. Tomato plants (Lycopersicon esculentum Mill. cv. Momotaro) were
used in the experiment.

The nutrient concentration of the solution in hydroponics is one of the most important
control factors for adjusting the balance between the two types of growth. Most skilled
growers usually increase the nutrient concentration as the plants grow.

It is also important to use two types of control systems for actual cultivation. One is an
on-line optimal (elaborate) control applied for short-term regulation (e.g. at important
growth points like the seedling stage and at flowering), and the other is a simple off-line
control applied for long-term regulation (e.g. whole growth stage). From these findings,
two types of optimization problems (I and II) were considered for controlling the
hydroponic cultivation process of tomato plants.

Problem I : The first problem is to determine suitable setpoints of nutrient concentration
to adequately maintain the balance between the two types of growth throughout growth,
using simple off-line control system.

Problem II : The second problem is to determine optimal setpoints of nutrient
concentration for optimizing the balance between the two types of growth only during the
important growth stage by using an elaborate on-line control system.

It is known that in the cultivation of tomatoes the balance between the two types of
growth is determined at the seedling stage. In this study, therefore, the on-line
optimization control was applied at this stage. During the seedling stage, only stem
growth, leaf growth and root growth are visible. Luo and Kato (1987) demonstrated that
the S/R ratio (S: stem dry weight, R: root dry weight) is a good indicator for predicting
future growth, and that smaller values result in better yields. From the experiment in this
paper, it was also found that larger stem growth resulted in poor flowering. However, in
this case, since measuring leaf growth is much easier than measuring root growth, leaf
growth was used as one of the predictors. It was also assumed that larger leaf growth is
advantageous for the promotion of the photosynthate production of the plant because the
area performing photosynthesis increases. From these findings, the ratio, TLL/SD, of
total leaf length (TLL) to stem diameter (SD) was defined as a predictor for the future
plant growth. As a matter of fact, higher values of TLL/SD resulted in better reproductive
growth. Therefore, controls for maximizing TLL/SD may be of value only during the
seedling stage.

Let TLL(k)/SD(k) be a time series of TLL/SD, as affected by nutrient concentration
NC(k) (k=1, ..., N: sampling day, N: final day). A model describing the system is given
by a neural network through identification. The input-output relation of this system,
which is given as a time delay neural-network model, is as follows (Narendra and
Parthasarathy:1990):



y(k) = TLL(K)/SD(k)
y(k) = f; {NC(k), NC(k-1), ..., NC(k-n), y(k-1), ..., y(k-ny), }

where NC(k) is the control input, y(k)=TLL(k)/SD(Kk) is the controlled variable, and f;{.}
is a nonlinear function given by the neural network, and n, is the system order.

For implementation, the seedling stage (1sk<N) was divided into four stages (1:
transplanting, 2: vegetative growth after transplanting, 3: the flowering of first truss, and
4: fruit setting for the first truss and flowering for the second truss) and the values of
TLL(k)/SD(k) at the last stage (stage 4) were evaluated. The value of the nutrient
concentration (=control input) in each stage, NC;, NC,, NC; or NC,, was kept constant
{NC] = NC(I), ey NC(N]L), NG, = NC(N]L'I'].), ey NC(NzL), NG; = NC(N2L+1), very
NC(Nsp), and NC; = NC(N3 +1), ..., NC(N); Ny1, N1, N3 and N: the last days of the first,
second, third and forth stages}.

An objective function was given by the average value of TLL/SD at the last stage
(stage 4, N3L+1sksN) in its dynamic response as follows (N;;+1: first day of the stage 4):

Fy(NC) = kzjﬁL(k)/SD(k)/(N-Nﬂﬂ) )

Thus, the second problem is to determine the optimal four-step setpoints of nutrient
concentration, NC;, NC,, NC; and NC,, which maximize F;(NC) using the optimizer. The
nutrient concentration was constrained to 0.2s NC(k) s2.0 (mS/cm) through preliminary
experiments.

maximize F;(NC)
subject to  0.2s NC(k) s 2.0 (mS/cm)

4. The expert system
The expert system determines the appropriate setpoints of the nutrient concentration
through all the growth stages of the tomato plants. This is an off-line decision system and
is applied to problems L.
he inference is based on backward inference and mainly consists of three steps. In
the first step, the present status of the plant growth and nutrient concentration are
evaluated. At any period, the status of vegetative growth was classified into five classes
(1: bad, 2: slightly bad, 3: normal, 4: slightly good and 5: good) based on growth data
(e.g., plant height, stem diameter, leaf numbers, leaf shape, leaf color, amount of root and
root color), solution data (e.g., nutrient concentration, pH and solution temperature),
cultivation data (e.g., growth stage and transplanting day) and climatic data (e.g.,
cumulative temperature and solar radiation). The current status of reproductive growth
was also grouped into five classes. Here, 60 production rules and 30 types of questions
were used for the first inference. A conceptual example of the production rules in the first
step is as follows:
Rule i: If growing period is May(input 5), days after planting is15 days(input 15), present growth
stage is fruit developmental stage of first truss( input 3),measured cumulative solar radiation is
1500(input1500),measured cumulative temperature is 300 C (input 300), measured plant height is
70 cm(input70), measured stem diameter is 2.5 cm(input 2.5), measured total leaf number is
13( input 13), leaf color is dark green( input 5 based on the color classification), amount of roots
is large(input 3), root color is white(input 5), nutrient concentration is 1.2 mS/cm(input 1.2),
solution pH is 6.2( input 6.2), ......... , then the vegetative growth status is “5: good”.
where (...) mean answers to questions.
Plant growth data such as plant height and stem diameter were given as the difference
between the reference values and the observed values. Furthermore, the current condition
of the nutrient solution is also classified into three classes (1: bad, 2: slightly bad, 3:

_6._



good) based on solution data, growth data and cultivation data. In the second step, the
future status of plant growth is predicted as either 1: flowering, 2: pollination, 3: fruit set,
4: fruit development or 5: fruit maturing, based on growth data, solution data, cultivation
data and climatic data. The number of rules here is 27. In the final step, appropriate
setpoints of nutrient concentration were determined from the five classes of vegetative
growth, three classes of reproductive growth, two classes of solution condition, five
classes of growth status and three classes of future climatic conditions. The number of
rules in the final step is 120.

Here, the expert system evaluates the plant growth through all growth stages, assuming
that a skilled grower’s manipulation (control input) is best. This is because a skilled
grower can deal well with the physiological processes of plants, and has the ability to
produce many good plants using his own experience. So, the difference of manipulation
between the expert system and the skilled grower was given as the criterion for control by
the expert system(Hashimoto and Hatou:1992).

5. The optimizer

The optimizer, consisting of neural networks and genetic algorithms, determines the
optimal setpoints of nutrient concentration only during the seedling stage. This is done
via simulation of the identified neural-network model, using genetic algorithms. This is
an on-line decision system and applies to problem II.

5.1 Artificial neural networks

Artificial neural networks were used for creating black-box models for simulation,
which predict plant responses to environmental factors. For identification purposes,
arbitrary feedback loops that produce time histories of the data are necessary elements of
the network (Isermannet al.:1997). The well-known time-delay neural-network model is
given as (Narendra and Parthasarathy:1990):

y(k) = f (u(k), u(k-1), ..., u(k-n), y(k-1), ..., y(k-n)) 2)
where n is the system order (number of system parameters).
The unknown function f(-) can be approximated (N
by a static neural network. Time series {
Fig. 5 show time-delay neural networks used  concentration

for identifying the dynamics of plant responses Ne
to environmental factors. They consist of three Time series {
layers, where identifies the response of the of light
TLL(k)/SD(k) ratio to two inputs (nutrient con fniensily
-centration, NC(k), and light intensity, L(k)) .

(Isermann et al.:1997). Fast time :
The current output TLL(k)/SD(Kk) is estimated LT
from both the historical input data {NC(k), ..., ylen)
NC(k-n,), L(k), ..., L(k- n;)} and from the
historical output data {y(k-1), ..., y(k- n,)}. -
(Rumelhart e{) al.:1986) (1) (em)} '

Fig. 5 Schematic diagrams of Neural Networks
5.1.1 Model validation
The data samples are divided into two data sets, a training data set and a testing data set.
The former is used for training the neural network, and the latter for evaluating the
accuracy of the identified model. The testing data sets have to be independent from the
training data sets. This type of model validation is called "cross-validation".



5.1.2 Choice of model structure

The most important task for determining the model’s structure is the choice of the
system order. Here, the system order and the hidden-neuron number of the neural
network were determined based on the cross-validation.

5.2 Genetic algorithms
5.2.1 Definition of the individual and the cording

In order to employ genetic algorithms, an "individual" for genetic evolution has to be
defined as the first step. Each individual represents a candidate for an optimal solution
(one possible solution).

In optimization problem II, since the aim is to determine the four-step setpoints of the
nutrient concentrations which maximizes F;(NC), the four-step setpoints of the nutrient
concentration, NC;, NC,, NC; and NC,, represents an individual and each nutrient
concentration is coded as a six-bit binary string. The genetic algorithms work under a
finite-length of binary strings. The simple bound constraints were 0.2sNC;=2.0 (mS/cm).

Individual = NC,;, NC,, NC;, NC, = 100100, 001001, 001100, 101010

A set of individuals is called a "population”. They evolve toward better solutions.
Genetic algorithms work with a population involving many individuals. The population
size varies according to the use of genetic operations. Noted that smaller population size
tends to converge to a local optima.

5.2.2 Definition of fitness

Fitness is an indicator for measuring an individual's survival quality. All individuals are
evaluated in terms of their performances, which are based on their fitness values. During
the evolution process, therefore, individuals having higher fitness reproduce, and individ
-uals with lower fitness die in each generation. An individual having the maximum fitness
is regarded as an optimal solution. Fitness is similar to the objective function in conven
-tional optimization problems. So, fitness in problem II can be represented by Eq. (1).

5.2.3 Genetic operations

Crossover combines features from two parent structures to form two similar offspring.
It operates by swapping corresponding components in the binary strings representing the
parent. Here, two-point crossovers were used. The mutation inverts one or more
components of the binary strings (=individual), selected at random from the population,
from 0 to 1 or vice versa. The mutation operation increases the variability of the
population and helps to avoid the possibility of falling into a local optima in the evolution
process (Krishnakumar and Goldberg :1992).

5.2.4 Procedure of genetic algorithm
The procedure of the genetic algorithm is as follows.
Step 1: An initial population consisting of several individuals is generated at random.
Step 2: New individuals in another population are added to the original population to
maintain diversity.

Step 3: Crossover and mutation operations are applied to the individuals selected at
random.

Step 4:The fitness values of all individuals are calculated using the neural-network
model and their performances are evaluated.

Step S:Superior individuals are selected and retained for the next generation (Selection).

Step 6:Steps 2 to 5 are repeated until an arbitrary condition is satisfied. An optimal value
is given as an individual with highest fitness. An elitist strategy was used for
selection.



5.2.5 Improvement of evolutionary nature

The evolution process is time-consuming and its convergent speed is low. Problems
such as premature local convergence are probably caused by the loss of diversity within
the population. In recent years, new evolution techniques have been discussed in order to
improve the evolutionary performance. Authors (Morimoto et al.:1997b) added a number
of individuals, generated at random, to the population in each generation to maintain a
higher level of diversity in the population. Kubota et al. (1996) applied a “evolutionary
virus algorithm” to improve the performance of the evolution. In this method, the
structures of chromosomes were effectively changed by the infection of a retrovirus.
Ohkura and Ueda (1996) proposed a new genetic algorithm based on neutral mutations
and then applied it to solve deceptive function optimization problems, which have no
search direction, using the building block hypothesis. Bersini and Varela (1994) used an
immune system for improving the local search performance of genetic algorithms around
the best solution. This technique, which is called a genetic immune recruitment
mechanism (GIRM), makes up for the weak local search of genetic algorithms. All the
methods mentioned above seem to be useful in maintaining the diversity of the
population. In this study, our own method was used.

6. Identification and optimization in hydroponic process

6.1 Response of the TLL/SD ratio to nutrient concentration
Fig. 6 shows the daily changes in the TLL/SD 350

ratio observed for tomato plants grown in hydro 300 |~ Treat.d 500

~——Treat, 2
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are shown. Author(Morimoto et al.:1997c) found
that three or more data sets are necessary for the
identification. This data was measured everyday
using an image-processing unit and a ruler. The
light condition is arbitrary. It was found that the
value of the TLL/SD ratio is markedly affected
by nutrient concentration. For identification, the
data for N=22 was obtained in each pattern.

The response of the TLL/SD ratio to both nutri
-ent concentration and light intensity is then iden
-tified by a neural network, and a blackbox mod
-el for predicting the TLL/SD ratio is created.

Nutrient concentration

Time (days)

Fig. 6 The observed daily changes in
6.2 Identification results TLL/SD ratio of tomato plants
Fig. 7 shows the identification result in the response of the TLL/SD ratio to both light
intensity and nutrient concentration by the neural network shown in Fig. 5. The data used
here was independent of the data in Fig. 6.
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observed responses. This result means that a 50 3 10 15 20
reliable computational model could be obtain Time (days)

ed for predicting the behavior of the TLL/SD Fig.7 Comparison of TLL/SD



ratio under any combination of the four-step setpoints of nutrient concentration.

6.3 Search characteristics for optimal setpoints of nutrient concentration
Fig. 8 shows the evolution curves during the
search for an optimal value under different cross
-over and mutation rates. The fitness in all cases
dramatically increased, and then reached a maxi 310 1

-mum value. However, the degree of increase

can be seen to be larger for higher crossover 2
and mutation rates than for lower crossover "'
and mutation rates. For example, the fitness !
reached a maximum value at the ninth genera
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-tion when the crossover and mutation rates 2% 0 20 20
were high (P.=0.8 and P,==0.8). When the cross Generation number

-over and mutation rates were low (P.=0.2 and

P.=0.02), however, the fitness could not reach Fig. 8 Evolution curves for an optimal
the maximum value and fell into a local optimum. value under crossover and mutation

This is probably due to the loss of diversity in the population caused by low crossover
and mutation rates, as mentioned in Section 5.2.5.

Noted that there is no guarantee that genetic algorithms yield a global optimal solution.
It is, therefore, important to confirm whether an optimal value determined by genetic
algorithm is global or local. In this paper, the confirmation was mainly carried out using a
round-robin algorithm which systematically searches for all values (possible solutions)
around the optimal solution at the proper step. This is because a near global optimal
solution can at least be obtained by genetic algorithms. An optimal solution was also
confirmed with a different initial population and different methods of crossover and
mutation. Through these procedures, a global optimal solution was confirmed.

6.4 Optimal control of the TLL/SD ratio during

the seedling stage 350
6.4.1 Estimated control performance 300 | q
Fig. 9 shows an estimated control result g 20l
calculated from the model simulation by the 3 150 |
neural network. The upper figure is the esti 100 1
-mated optimal control performance of the L
TLL/SD ratio. The lower figure represents the e 5 1 as 20
optimal four-step setpoints of nutrient concen Time (days)
-tration (control input) obtained by the optimi g
-zer. In the present study, the nutrient concen E_, |
-tration was limited to the range 0.2t0 2.0 (mS/ § § |
cm). The control strategy recommended main s&1y
-taining a slightly higher level (1.4 mS/cm) in i,
the first stage, a markedly lower level (0.3) in 2 © s 10 « 15) 20
ime (days

the second stage, a slightly higher level (1.6)
in the third stage and the maximum level (2.0) Fig. 9 Estimated optimal control performance
in the forth stage. In hydroponics, as mentioned

above, since the roots of plants always exist in a suitable environment for the uptake of
any nutrient ions, the vegetative growth during the seedling stage is easy to promote.
Active vegetative growth during the seedling stage will result in a poor reproductive
growth in the future ( Ehret and Ho: 1986, etc.). Therefore, vegetative growth must be
suppressed at the early seedling stage, before the flowering of the first truss. The low
nutrient concentration in the second stage seems to be effective in suppressing the
excessive vegetative growth during the seedling stage. The high nutrient concentrations in



the third and fourth stages appears to be useful in accelerating repro -ductive growth (i.e.,
the flowering of the first and second trusses, and the fruit-setting of the first truss during
the seedling stage). This control strategy clearly maximized the fitness from many model

simulation.

6.4.2 Actual control performance

Fig. 10 shows the actual control performance
of the TLL/SD ratio. The solid line shows the opti
-mal control performance and the dotted line repre
-sents conventional control performance. The con
-ventional strategy is simply to increase the nutri
-ent concentration in a stepwise fashion with the
growth of the plants. In order to make the differ
-enc between the two control performances clear
, standard deviations were calculated and a t-test
was then carried out. Comparing both control per
-formances, it is apparent that the values of the
TLL/SD ratio are 10-15 % higher with the opti
-mal control than with the conventional control.
This result was confirmed from a t-test at the 5%
level of significance. This is because with the op
-timal control stem growth was significantly sup
-pressed by the low nutrient concentration at the
second step, while in both cases the leaf growth
is not very different. Thus, the effectiveness of
the optimizer for the optimal control of plant
growth was also confirmed experimentally.

6.5 The control of nutrient concentration throughout

growth
The expert system was applied to control the

nutrient concentration of the solution adequately
through every growth stage of the tomato plants.

Fig. 11 shows the daily setpoints of the nutri
-ent concentration in this case. The solid line re
-presents the setpoints determined by the expert
system and the dotted line denotes the setpoints
determined by a skilled grower. Noted that suit
-able setpoints of nutrient concentration were de
-termined to maintain the balance between vege
-tative growth and reproductive growth in all the
growth stages, in order to get good fruits.
Since it was assumed that a skilled grower's
method was best, the criterion for control was
given as the similarity between the control inputs
of the expert system and those of the skilled
grower in this study. Good fruits were obtained
in both cases, with no statistically significant diffe
rences in their yields.

It is clear from the figure that nutrient concent
rations in both cases were increased at the start
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of the second flowering stage and the third flowering stage. These operations seem to be



effective for the promotion of flowering and fruit-setting for the second and third trusses
because these physiological responses require more nutrients. It can be seen that both
control inputs through each growth stage are similar to each other. This means that the
expert system used worked well for optimizing the growth of tomato plants. However,
there are several detailed differences in the two setpoint trajectories. This is probably due
to the fact that the production rules in the expert system were based on the skilled
grower's knowledge as well as the scientific data, while the skilled grower's decisions
were only based on his own empirical knowledge. This may explain the differences
between the two methods. It was impossible to judge which was better, because both
methods resulted in almost the same good yields(Hashimoto and Hatou:1992).

CONCLUSION

It may be clear that plant factory should be expected as the new and alternative food
production system in agriculture,

The fundamental concept may be based on the self optimization of the plant responded to
environmental stress, which was revealed by Prof. Went, resulting to one of paradigm shifts.

Fully controlled plant factory under artificial light was systemized through the abduction
reasoning based on the concept.

Greenhouse type plant factory may be most expected in 21st century, where the solar
energy is effectively available. To operate it effectively, we have to examine a lot of
characteristics based on system control approach. Intelligent control including Al may be
the breakthrough over barriers involved.

It may be noted that these approaches will give us new frontier of agricultural engineering
between IT(Information Technology) in the cyber and plant science.
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Fig. 1. Greenhouse type plant factory Fig. 2 Closed fully controlled plant factory
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}(Narendra and Pathasarathy:1990).

y(k) = TLL(k)/SD(k)
y(k) = fi {NC(k), NC(k-1), ..., NC(k-r), y(k-1), ..., y(k-m), }
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o WRol AWM F2L da AsHh R vA ALEF AGH A e
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A AAA Folo Fd Y A (Y 3), ASH FH HIFF FAES 15000 Y
1500), Al&EH 74 L2 3000(98 300). ASdH qEAH ol Nem(JE 70), A=
7] AL 25em( ¥ Y 25), AFEH F Yo e 1398 13), ¥ 4EFL FL
Azt Birol ZAst g 5), Bale] k& BES(9E 3), ¥ 4L @AY 5)
FET 12 mS/em(¥E 12), &4 pHE 62Y9Y 62), ..., Z2]dH JF 43 = ¢
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, 20 FEAE, 3 A, 4 HY 4S5 3D AE 974 HE9 HisE 2770 F
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58, 4% Zde g T3, 283 v 7F 219 M FFLERE @7‘3%5}.
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