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ABSTRACT

The aim of this paper is to study and find characterizations of fuzzy quasi-semicontinuous
and fuzzy quasi-semiopen mappings between fuzzy bitopological spaces. The notion of

fuzzy quasi-semiopen sets
quasi-semiopen mappings.
studied to some extent.

Finally,

1. Introduction and Preliminaries

Changl2] used the concept of fuzzy sets to
introduce fuzzy topological spaces and several
authors continued the investigation of such
spaces. From the fact that there are some
non-symmetric fuzzy topological structures,
Kubiak[5] first introduced and studied the
notion of fuzzy bitopological spaces (A triple
(X,711,79)) where X is a non-empty set

and 7; and 7, are fuzzy topologies on X is

called a fuzzy bitopological space (shortly,
fbts)), as a natural generalization of fuzzy
topological space, and initiated the bitopo~
logical aspects due to Kelly[4] in the theory
of fuzzy topological spaces. Since then se-
veral authors[3,5,6,8] have contributed to the
subsequent development of various fuzzy
bitopological properties. In this paper, using
the notion of fuzzy quasi-semiopen(shortly,
fqso) introduced by Park, which is weaker
form than fuzzy quasi-open set[9), we
introduce the concept of fuzzy quasi-semi
continuous (shortly, fgq-sc¢) mappings and
study its basic properties Finally, we intro-
duce and investigate some extent fuzzy
quasi-connectedness 1in fuzzy Dbitopological
setting. For definitions and results not
explained in this paper, we refer to the
papers [2,8-10] assuming them to be well
known. A fuzzy point in X with support
x€X and value @ (0<{a<1) is denoted by
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is used to define fuzzy quasi-semicontinuous and fuzzy
fuzzy quasi-semiconnectedness is

introduced and

X, For a fuzzy set A of X, 1 —A will
stand for the complement of A. By 0Oy and
1x we will mean respectively the constant
fuzzy sets taking on the values 0 and 1 on
X. A fuzzy set A of fbts ( X, 1y, 79) is called
r,~fo (resp. r;-fc) if A=r; (resp.1—Aer).
A fuzzy set A of fbts (X, 1, 1y) is called
7;~Q-nbd(resp. r;,-nbd) of x, if there exists
a 7;fo set U such that x,qU <A (resp. x,
eU<A). For a fuzzy set A of fbts
(X, 1,7, rt-int(A) (resp. r;-cl(4)) means
respectively the interior and closure of A
with respect to the fuzzy topologies r; and
t;, where indices i and j take values {1, 2}
and i¥J.

Definition 1.1[9]. Let (X, 71,75 be a

fbts and A be any fuzzy set of X. Then A
is called fuzzy quasi-open[9] (briefly, fqo) if
for each fuzzy point x, €A there exists

either a 7,-fo set U such thatx ,qU <A or

aro-fo set V such thatx,qV <A A fuzzy
set A is fuzzy quasi-closed (briefly, fqc) if
the complement 1-A is a fqo set.

Definition 1.2[9]. Let (X,7,73) be a



fbts and A be any fuzzy set of X. Then A
is called quasi-nbd (resp. quasi-Q-nbd) of a

fuzzy point x, if there exists a fqo set U
such that x, U <A (resp. x ,qU <£A).

Definition 1.3[9]. Let A be a fuzzy set of a
fbts X.
(a) The quasi-closure of A, denoted by
qcl(A), defined by

qcl(A)= U{B: A<B,Bis fqc}
(b) The quasi-interior of A, denoted by
qcl(A4), defined by

gint(A)= N{B: B<A,Bis fqo}

For a fuzzy set A of a fbts X, qgint(1-A)=1-
gint(A4) and qcl(4) (resp.qint(4)) is fqc (resp.
fqo).

2. Fuzzy Quasi—-Semiopen Sets

Definition 2.1{10]. Let (X, 7,75 be a
fbts and A be any fuzzy set of X. Then A
is called fuzzy quasi-semiopen (briefly, fqso)
if there exists a fqo set B such that B<A
<qcl(B). A fuzzy set A is fuzzy quasi
—closed (briefly, fgsc) if the complement 1-A
is a fqo set.

Every fqo set is fgso set and every r;-fso

set 1s fgso set but the converses may not
be true.(see Example 1.3(a) in [9] and Exam-
ple 2.2)

Example 2.2. Let X={abc}, 7,={1x0xA)}
and 79={1x0x B} where A and B are fuzzy

sets of X given by A(a)=07, A(b)=04,
A(c)=0.7; B(a)=0.6, B(b)=0.7, Bf(c)=0.3. We
consider a fuzzy set C of X defined by
C(a)=C(b)=C(c)=0.7. Then C is a fqso set but

neither a 7;-fso set nor a r,-fso set.

Theorem 2.3. A fuzzy set A of a fbts (X, 7y,
7y) is fgso set if and only if it is the union

of a r;-fso set and a 9-fso set.

Theorem 2.4[10]. (a) Any union of fgso sets
is fgso ;
(b) Any intersection of fgsc sets is fqsc.

Remark 2.5. The intersection (resp. union) of
faso (resp. fgsc) sets need not be a fgso
(resp. fgsc) set (In Example 3.2).

However we have the following properties.
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Theorem 2.6. Let A and B be fuzzy sets of
fbts (X, le Tz).
(a) If Ais a r;-fso and 7y-fso set and B is

a fgso set, then A MB is a fgso set.
(b) If Ais a r;-fsc and ry-fsc set and B is

a fgsc set, then A UB is a fgsc set.

The following Example shows that the
product of fqso sets need not be a fgso set.

Example 2.7. Let X={gb,c} and A, k=1,
234)be fuzzy sets of X defined as following:
Al(d)=0.7, Al(b)=0.4, A1(C)=0.7§
Ay(a)=0.3, Ax(b)=0.4, Ax(0)=0.7;

A3(a)=0.6, A3(5)=0.7, A3(c)=0.3;

A(a)=0.7, Ay(8)=0.7, Ay (c)=0.3.
Let 7;={1x,0x,A;1}, o={1x,0x,A4;},
O'1={lx,0X,A3} and 0'2={lx,0X,A4} be
fuzzy topologies on X. Then A= A;UA; is
faso in (X, 7 1) and B= A3UA, is fgso in
(X, 01,02). But A XB is not fgso in (X XX,
X Ty, 01X 0y).

Definition 2.8. A fuzzy set A of a fbts
(X,7;,19) is called a quasi semi-Q-nbd

(resp. quasi semi—nbd) of a fuzzy point x,
qU <A (resp. x, €U <A).

Theorem 2.9. Let A be a fuzzy set of a fbts
X. A is a fgso set if and only if it is a quasi

semi—nbd of every fuzzy point x, €A.

Definition 2.10[10]. Let A be a fuzzy set of
a fbts X.

(a) gscl(A)= N{F'F is fqsc set and A <F }is
called quasi semi-closure of A.

(b) gscl(A)= U{U:U is fgso set and U <Alis
called quasi semi-interior of A.

For a fuzzy set A of a fbts X, gscl{1-A)=1-
gsint(A) and qscl(A) (resp. gsint(4)) is fgsc
(resp. fgso) set.

Theorem 2.11, Let A be any fuzzy set of a
fbts X. Then x, €qgscl(A) if and only if for

each fgso quasi semi-Q-nbd U of x, UdA.

Theorem 2.12. If A is any fuzzy set and B
is a fgso set of fbts X with A dB, then



gscl{4) d B.

3. Fuzzy Quasi-Semicontinuous and
Fuzzy Quasi-Semiopen(Semiclosed)
Mappings

In this section, we introduce the concepts of
fuzzy quasi-semicontinuous, fuzzy quasi-semi
open (semiclosed) mappings by usings fgso
and fgsc sets and study some of their basic
properties. Several characterizations of these
mappings are obtained.

Definition 3.1. Let f (X, 7, 1y) = (X, 67, 09)
be a mapping. Then f is called:

(a) fuzzy quasi-semicontinuous (fg-sc) if
7 NA) is fqso in X for each 7;~fo set A of
Y;

(b) fuzzy quasi-semiopen (fgs-open) if flA4) is
fqso in Y for each 7,-fo set A of X,

(c) fuzzy quasi-semiclosed (fgs-closed) if
fA) is fgsc in Y for each 7,~fc set A of X

Definition 3.2. A mapping f : (X, 7, 1) =
(X, 0, 00) is called a fuzzy pairwise semi

continuous(resp. fuzzy pairwise semiopen,
fuzzy pairwise semiclosed), briefly, fp—sc(resp,
fps-open, fps-closed) if the induced mappinfs
f (X, tp) =(Y, 6,) are fuzzy semicontinuous(6)

(resp. fso, fsc[111)( £=1,2).

Remark 3.3. It is clear that every fp-sc(resp.
fps-open, fps—closed) mapping is fq-sc(resp.
fqs-open, fgs—closed). That the converse need
not be true is shown by the {following
examples.

Example 3.4. Let X={ab,c} and A, be fuzzy
sets of X defined as follows:
Al(a)=0.7, Al(b)=0.4, A](C)=O.7;
Az(a)=0.6, Az(b)=0.7, Az(C)=O.3;
A3(a)=10.3, A3(5)=0.7, A3(c)=0.6;
A4(d)=0.7, A4(b)=0.7, A4(C)=O7
Let r;={lx,0x,A:}, ={1x0x, A},
0= {lx.Ox,A:;} and Oy = {].X,OX,A4} be
fuzzy topologies on X.
(a) If f (X, 7, 1)~ (X, 0, 05) is mapping
defined by fa)=c, fib)=b, fic)=a, then [ is
fq-sc mapping but not fp-sc.
(b) If g (X, 0y,0,) = (X, 7, 15) is mapping
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defined by gla)=c, g(b)=b, glc)=a, then g is
fgs-open mapping but not fps-open.

Now we shall discuss the characteristic pro-
perties of fq-sc, fqs-open, fqs-closed map-
pings in fbts’s.

Theorem 3.5. For a mapping f (X, 7, 75) —
(Y, 01, 05) the following are equivalent:

(a) fis fg-sc

(b) For each fuzzy point x, in X and each
o,~fo nbd of V of fl x,), there exists a fqso
quasi semi-nbd U of x, such that AU) <V,
(¢c) For each fuzzy point x, in X and each
o~fo Q-nbd of V of flx,), there exists a
quasi semi-Q-nbd Uof x , such that AU) <V;
(d) For each fuzzy set A of X, flgscl(4)) <
o—cl(flA));

(e) For each fuzzy set B of Y, gscl( £~ 1(B))
< 7N ocl(B)).

Theorem 3.6. For a mapping f: (X, 1 r5) —
(Y, g, 0), the following are equivalent:
(i)-(a) f is fqs-open;

(b) fl ;-int(A)) <gsint(flA)) for each fuzzy
set A of X;

(©) ti-int( £ 1B < F " Naint(B))  for
fuzzy set B of Y.

(ii)~-(a) f is fqs-closed;

(b) fl r;-cl(4)) <gscl{fA))for each fuzzy set
A of X

each

Theorem 3.7. Let f (X, 7. 175) — (Y, 0.05)
and g: (Y, 0, 05) = (Z, 8, 63) be mappings

(Y, 0)—(Z,6) is
fuzzy continuous (i=1,2), then g - fis fg-sc.
b) If f (X, ) =Y, 0,) is fuzzy continuous

(@) If fis fg-sc and g :

(i=1,2) and g is fq-sc then f ° g is fq-sc.

(o) If f (X, t;)—(Y,0;,) is fuzzy open(resp.
fuzzy closed) (i=1,2) and g is fgs-open{resp.
fqs-closed), then g -f is fgs-open{resp.
fgs-closed).

(d) If f is fqs-open(resp. fgs—closed) and g :
(Y, 0) —(Z,06;) is fuzzy open(resp. fuzzy
closed) (i=1,2), then f - g is fgs—open(resp.
fqs—closed).



4. Fuzzy Quasi-Semiconnected Sets

To introduce fuzzy quasi-semiconnected sets,
we first define the concept of fuzzy quasi-
semiseparatedness in terms of quasi-semi
closure operator as follows.

Definition 4.1. Two non-—null fuzzy sets A
and B of a fbts (X, 77, 1) (ie. neither 4 nor

B is 0yx) is called fuzzy quasi-semiseparated
if gscl(4) dB and gscl(B) dA.

Theorem 4.2. Let A and B be non-null
fuzzy sets of a fbts (X, 7 13).

(a) f A and B are fuzzy quasi-semi
separated, and A, and Bi; are non-null fuzzy
sets such that A1 £A and Bi <B, then A
and Bi also fuzzy quasi-semiseparated.

(b) If A ¢B and either both fgso or both
fqsc, then A and B are fuzzy quasi-semi
separated.

(c) If A and B are either both fgso or both
fasc, and if Ca(B)=A N(1-B) and Cs(A)=B
(1-4), then Ca(B) and Cg(A) are fuzzy
quasi-semiseparated.

Theorem 4.3. Two non-null fuzzy sets A
and B are fuzzy quasi-semiseparated if and
only if there exist two fgso sets U and V

such that A <U, B<V, A ¢V and B ¢U.

Definition 4.4. A fuzzy set which can not be
expressed as the union of two fuzzy quasi-
semiseparated sets i1s called a fuzzy quasi-
semiconnected set.

Theorem 4.5. Let A be a non-null fuzzy
quasi-semiconnected set of a fbts (X, 1y 1y).

If A is contained in the union of two fuzzy
quasi-semiseparated sets B and C, then

exactly one of the following conditions (a)
and (b) hold:

(a) A<B and ANC=0x;
(b)) ALCand ANB=0yx .

Theorem 4.6. Let {A, e €A} be a collec-
tion of fuzzy quasi-semiconnected set of a
fbts X. If there exists A€ A such that A,

NAs+0x for each e <€ A, then A= U{A4,
e €A} is fuzzy quasi-semiconnected.

Theorem 4.7. Let A be a fuzzy set of a
fots (X, 7, 7)) such that there exists at

101

least one point x €X with A(x)>1/2. Then
A is fuzzy quasi-semiconnected if and only if
any two fuzzy points of A are contained in a
fuzzy quasi-semiconnected set contained in A.

Theorem 4.8. Let f (X, 1) 15) = (Y, 01 07)
be a fg-sc surjection. If A4 is fuzzy quasi-
semiconnected, then fl4) is fuzzy semicon-
nected in (Y, o).
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