Phytoremediation by Persicaria thunbergii Kang, Kyung Hong · Kim in-sung* School of life science, Jeonju Univ. *Dept. of biology, Graduate school, Jeonju Univ. ## Abstract For the consideration of phytoremediation, Cd²⁺ and Pb²⁺ were analysed in the soil of the habitats and the leaf, stem and root of Persicaria thunbergii in the different localities of Bong-Dong river. In the soil and plant samples of research areas, Cd2+ was not detected but, Pb2+ detected as follows; about $7.8 \sim 12.6 \mu g/g$ in the soil of habitats, about $11.7 \sim 18.4 \mu g/g$ in the leaf, about $7.5 \sim 15.5$ μg/g in the stem and about 89.1~193.6μg/g in the root of P. thunebrgii and the correlation coefficient value between the Pb²⁺ contents in soil and P. thunbergii was 0.814(>t_{12,001}). After P. thunbergii was treated with Cd(NO₃)₂ and Pb(NO₃)₂ of 5 and 10mM, the bioaccumulation of Cd² and Pb2' in the leaf of plant, the remaining mass of heavy metals and the variation of pH in the soil, and the increasing rate(%) of phytochelatin in plant were examined. The concentrations of Cd^{2+} and Pb^{2+} in the leaf as follows; in the case of Cd^{2+} , about $0.82 \sim 2.79 \mu g/g$ and in Pb^{2+} , about 2.87~8.08μg/g. The remaining mass of heavy metals and the variation of pH in the cultured soil decreased as follows; about 77.1% and pH6.39 in Cd²⁺5mM, about 90.2% and pH5.79 in Cd²⁺10mM, about 81.1% and pH6.00 in Pb²⁺5mM and about 85.7% and pH5.80 in Pb²⁺10mM. The phytochelatin were increased in plant samples treated with 10mM Cd(NO₃)₂ and Pb(NO₃)₂ as follows; about 259% by Cd²⁺ and about 305% by Pb²⁺ be compared with control, and the molecular weight(da) of these phytochelatins were estimated about 4,300~8,600da in the case of the treatment of Cd2+ and about $3.200 \sim 9.700$ in Pb².