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Abstract :

The operation of a networked computing system
(NCS), such as Internet, can be viewed as a resource
allocation problem, and can be analyzed using the
techniques of mathematical modeling. We define a
general NCS and translate that setup into a model of
an economy. The preferences of users are taken as
primitives, and servers in the network are viewed as
productive firms with priority input queues. Each
server charges a rental price for its services by
priority class. We characterize optimal . system
allocations, and derive formulae for supporting rental
prices and priority premia such thal the aggregated
individual user demands do not exceed optimal levels
and waiting-time  expectations are correct. Our
economic approach has the added benefit of
providing a sound basis for evaluating NCS
investment alternatives, using a process analogous to
free entry and exit in free-enterprise economies.

1. Introduction

A networked computing system (NCS) offers the
potential for harnessing the power of a large number
of possibly specialized computers linked through a
network. Broadly defined a NCS consists of a
network of heavy-duty computers (such as mainframes
and minicomputers) called “servers”, and smaller
user-interface  processors  (such as PCs and
workstations) called “clients”, along with other
equipment (such as storage devices, printers, ethernet
cabling, microwave channels, routers, etc.), the
operating systems and communication protocols.
Servers respond to queries or commands from clients
and provide a shared computing environment,
application control, distributed databases, computation
management, heavy-duty computation, and network
communication services.

A client, uniike a dumb terminal, is capable of
modestly sophisticated processing and computation tasks
for the user. Clients could also have software
designed to assist the user in achieving optimal
performance from the NCS, and it is this potential
that we exploit in this paper. A major challenge is
how to effectively manage such systems in a diverse
and changing environment. The approach we take can
be viewed as an extension of the literature on
performance evaluation of computing systems. The

computer science branch of that literature assumes
fixed steady-state arrival rates of jobs and analyzes
the resulting steady state queue lengths in the system.
While we draw upon results from the queuing field,
our contribution is in the economic analysis of NCSs.
Rather than specify fixed arrival rates, the
management literature has explored the potential for
prices to affect the arrival rates and thereby the
steady state queue length. The case of a general NCS
with priority queues and general price-sensitive
stochastic arrivals is the subject of our paper.

2. Description of a NCS

We consider a NCS consisting of a finite number
of clients, servers and other hardware units with
well-defined, commonly known capabilities. Let M
denote the set of all clients, servers and hardware
units, and let mEM denote a generic "machine" in
the NCS.

We assume that each machine is equipped with a
priority queue system. For notional simplicity, we
assume that each machine offers K classes of
non-interruptible priority service, K={1, ... , K}, with
k=1 being the first (or highest) priority. For analytical
simplicity, we assume unlimited queue capacity.

The machines are connected with each other
through a network. We model shared communication
devices as distinct machines. Thus, the Internet is a
special case of a general NCS. Given this modeling
trick, the abstract network will consist of direct
connections only; that is, if m and m' are directly
connected in the network representation, then there
exists a dedicated physical linkage between m and m'
that is not shared by any other machine. Let An
denote the set of machines from which m can receive
direct input, and let By denote the set of machines to
which m can send direct output. We can formally
represent the abstract network as N={(Am, Bm), m&
M}. In addition, let C denote the subset of "clients"
machines: the machines where users interface with the
NCS.

A typical NCS will support many programming
languages. Let P denote the set of all finite
“programs” in the languages of the NCS system. A
machine mEM can be represented by a triplet (vm,
fn, Qm), where vm is the processing speed in cycles
per second, fn(p) gives the output when pEP is the
input, and qm(p) gives the expected number of cycles
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required to process input p. Then, qm(p)/vm is the
expected execution time of program p at machine m.
Note that restricted access to a particular machine can
be represented by a production function that performs
the desired function only if p contains a specific
access password, and otherwise outputs an
access-denied message. In a similar vein, a machine
not capable of executing some program, outputs an
unable-to-read message, and if the run time exceeds
the limit (if any) specified in the program, then it
outputs a time-exceeded message.

More generally, given a program p started at the
machine specified by the instructions, let Pn(p) denote
the set of intermediate programs resulting from the
execution of p that are processed by machine m. For
any program p, given that p is started at the machine
specified by the instructions, for each machine m, we
define Qm(p) to be the expected total load on
machine m imposed by program p until that program
is terminated and exists from the NCS. Then, Qum(p)=
2P EPH(P)qm(pm). We assume the user's client
interface software can estimate {qm(p), mMEM}.

Given a stationary stochastic arrival process for
services, let w={wmx, mEM, kEK} denote the vector
of expected queue waiting times at the machines. As
just illustrated, a program may access a given
machine several times in the course of executing. Let
2 m{py#Pu(p), the number of intermediate programs
of p that must be processed at machine m. Then,
program p of priority class k has an expected waiting
of Wk 1 m(p) at machine m.

Finally, assuming that a user chooses a single
priority class, say k, for all phases of the execution
of a program p started at the machine specified by
the program's instructions, the total expected
throughput time is
7 (b k, WlEZnlQu(p)/Vm + Wank £ m(P)]. (1)

3. Users' Aspects

Let I denote the set of users, and for each il
let C;CC denote the set of client machines to which
user i has direct access. While there is a close
linkage of wusers and clients, we will continue to
employ both terms in specific contexts. The user is a
human (or group of humans in an organizational
team) with preferences which form the basis for
choice. In contrast, the client is a machine, and as
such, has no preferences of its own. While we may
endow the client machines with sophisticated software
to automate many of the decision-making functions,
the source of value resides with the human user.

Let S denote the class of services potentially
provided by the NCS. Services sES can be viewed
as subroutines which operate on the specific data,
provided that the characteristics of the data are
compatible with the subroutine. Different qualitics are
represented formally as different services. Since
programs specify the client machine at which they
must start, the set of feasible programs for user i is
a subset of all possible programs. We let Pi(s)CP
denote the subset of programs that will successfully

deliver service s for user i; that is, if a user i
initiates execution of program p&EP(s) at  the
appropriate  machine m&C;, then the NCS will
execute the program and return a satisfactory output.

We model the NCS service needs of a user as a
stochastic process with a specific arrival rate (or
“average flow" rate). One setting that makes this
assumption quite plausible is that a user is a group
of individuals (such as a team of engineers or
accountants), so the flow of service needs are the
sum of the service needs from many individuals. Let
xi={Xikp, SES, kEK, pEPi(s)} denote the vector of
average flow rates for user i, where xi«, denotes the
average flow rate by user i for program pEPi(s) of
priority class k.

We assume that the user benefits of NCS services
depend only on this average flow rate. We represent
the instantaneous value to wuser i of x; by a
continuously differentiable concave function Vi(x;).
Given our definition of a service, all p&Pi(s) and k
€K are perfect substitutes in terms of user benefits.
Accordingly, we assume that Vi(+) depends only on
Xi= X p 2 Xiskp, the flow rate for service s, and that
Vi is strictly concave in Xis.

The net bencfit to the user is less than Vi(x;)
because services take time to execute and it costs
money to use the NCS. Different programs in Pi(s)
may have different costs, so consider each program p
E€Pi(s) separately. The expected throughput time of
program p and priority k is 7 (p,k,w), as defined in
(1). Let &8s denote user i's delay cost per unit time
for service s, so §is(p,k,w) is the total expected cost
of delay of using program p.

Expected monetary costs are determined by the
expected load imposed by the program p, the priority
class k, and the rental prices of the machines. Let
r(@)={rm(q), mEM, kEK}, where tm(q) is the rental
price for q units of work with priority k at machine
m. This general form allows the rental prices to
depend on the job size in a general non-linear
manner (e.g., quadratic in a M/G/C system). Then,
the expected monetary cost of program p and priority
class k is 2m2PmEPum(P)rmk(qm(Pm)). It is convenient
to derive an alternative equivalent expression for this
expected cost. Let Png(p) denote the subset of Pu(p)
which generate a load of q at machine m, and let g
mg(P)= #Pmq(p). Then, ZinZpmEPm(P)im(qu(Pn)) = =
a4 mg(P)Imk(q). Clearly, the user prefers the program p
€Pi(s) and priority class k that minimizes total
expected costs. Accordingly, we define
Cult,Wy=min{ 8 i 7 (PK,WH Zin T 4 ma(P)mk QP EPi(S),
keK}. 2)

Let [pis(r,w), kis(r,w)] denote the set of pairs of
programs and priority classes that minimize total
expected costs for services. By standard arguments,
c’is(r,w) is a continuous convex function. The net
benefit to user i of an average flow rate, x;, is
(X, WYEVi(xi) — 220k 2opXiskpC (W) (3)

We assume that user i does not anticipate how
his service demands and choice of programs may
affect expected waiting times w and rental prices r.
As the actual waiting time a job will experience
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depends on what all users have submitted in the
recent past and in the future, it would be impossible
for the user to predict precisely how future waiting
times and rental prices will differ from their current
values. In a large NCS, the actual influence of a
user's submittal on future waiting times and prices
will be minuscule in comparison to the variance
induced by other users. Thus, it is a reasonable and
computational-cost-saving assumption to take expected
waiting times and rental prices as fixed at their
current values.

Accordingly, each user i is assumed to choose x;
to maximize ui(x;r,w) taking (r,w) as fixed, and we
let xir,w) denote the set of optimal demands.
Specifically, xi(r,w) is characterized by
8 Vi(xi)/ 9 Xigep <€ i(r,w) for all s, k and pEP((s), and
8 Vi(xi)/ 3 Xisp<C is(r,w) implies Xigp=0. @

Then the demand function for services, Xi(r,w)=
S pXiskp(T,W), is finite, single-valued and continuous
for all non-negative (r,w).

We pause to interpret the act of choosing flow
rates Xis. We model the arrival of potential NCS
service requests as an exogenous stochastic process
that is independent of the pricing of the NCS.
Suppose the exogenous arrival rate of questions
requiring NCS service s is Xo, with the interpretation
that if the minimum cost of delivering s were 0, then
Xo would be the average flow demand for service s.
A user receiving one of these questions must decide
whether or not to actually request NCS service. Let
Ais denote the probability of accepting the question
and submitting service requests. Given the exogenous
arrival rate X,, the average flow demand for s from
this user will be X;= Ai:Xo. Thus, the choice of Ajs
is equivalent to the choice of an average flow rate
Xis. The optimal choice maximizes (3) and equates
the marginal benefit with the cost ¢'is(r,w).

cl

Xis=AisXo Xo
Fig.1 Optimal Choice of Average Flow Rates ¢ m(x)

Fig. 1 illustrates this optimization graphically. The
downward-sloping "demand" curve gives the marginal
benefit of service s as a function of the average flow
rate of service s. The horizontal "supply" curve gives
the cost . An exogenous change in V; or Cis
would shift these curves, thereby causing a change in
the optimal Xjs.

Observe that we have resolved the well-known
integer nature of computation problems. While each
service s is an indivisible entity, we have treated the
demand choice as if it could be subdivided in any
matter to accommodate the certainty-equivalent flow
rate of X;. However, in actual implementation, the

service requests enter the NCS as indivisible units.
We accommodate this integer requirement by
modeling the arrival process as a stochastic process
with arrival rate Xi, and we hold input in the
machine queues until ready to be processed. The
resulting delays are reflected in the waiting times w.

4. Optimal Resource Allocation

The most natural definition of an equilibrium
would be that average demand zn=2X D>,
XispQm(p) at each m equals the "supply" vy
However, with a Poisson arrival process, equality of
the arrival rate and the service rate would yield
infinite expected queue waiting times. But if queue
waiting times are infinite, then there is no value to
computation services, so demand would sink to zero,
an inconsistency. Clearly, we want to have
consistency between expected waiting times, demand,
and actual times.

The entire array of demands for all users,
services, priority classes, and programs is denoted by
x={Xisip, 1I€1, SES, k€K, pEPi(s)}. Given the load
functions, {qm(p); mME&M]}, x completely determines
the stochastic process in the NCS. In general, the
expected waiting time at machine m will depend on
the distribution of job arrival rates by priority class
and job size. This distribution is given by
& mkq(X) = 20i 306 20k 2 pXiskp U wa(P); &)
let ¢n={@mq¢ KEK, gEIN, where IN denotes the
set of integers} denote the matrix of job arrival rates
at m by priority class and job size. The aggregate
flow (measured in cycles per second) to m in priority
class k is then zm = 2.¢q ¢ mkq

We assume that the expected waiting time at m
given priority class k is a function of the distribution
matrix n and capacity v
wmk=Q k(m(l); Vm), (6)
when Qy( *;vm) is continuously differentiable, strictly
increasing and convex as long as > xZmk<Vm, and Q
(0;vm)=0. Further, Qu(¢ m(X); Vm) — ©© a5 izm —
Vm. We also assume that ¢ 2j/ ¢ mq for all k<k; in
other words, the incremental waiting time imposed on
priority j jobs is greatest for new arrivals of the
highest priority jobs. Qi(¢m(X); vm) gives the
physical tradeoff between waiting time and throughput
for priority class k, as illustrated in Fig. 2, when wp
is plotted in the downward direction. Users prefer
points to the northeast of this convex boundary, i.e.
they prefer more throughput and less waiting time.

Vi Om(X)

0 |

Q@ m(X);Vm) User
~Indifference

Curve

W

Fig. 2 Tradeoff between Waiting Time and Throughput



To derive the optimal trade-off we need to define
a system-wide welfare function. It is natural to take
the sum of non-pecuniary user benefits:

W)= SiVi(x) — s 8 is Ze Spiske 7 (W7

We assume here that there are no costs to
operating the NCS and the services, so the only
social costs are due to congestion. However, it would
be a trivial matter to extend the analysis to include
positive operating costs.

We now seek an allocation of demands, x= {Xiskp,
iel, s€8, k€K, pEPi(s)}, and waiting times w,
that maximize W(x,w) subject to (6). The
Kuhn-Tucker conditions of this welfare maximization
are:

3 Vis/ 3 Xiskp lo) is T (p,k,W)S Zquﬂ mq(P)ZJ[ a .QJ/
0 ¢mk) 7 mj for all i, s, k and pEPi(s);

a Vis/ 0 Xiskp d is T (p,k’W)< Zqu M mq(P)Zj[ a -QJ/
0 ¢ mkql ¥ m implies Xigp=0; ®
and 7y mk=2i252p é isXiskp & m(p) (9)

where mx is the Lagrangian multiplier for (6).
Equation (9) defines the shadow price of waiting time
for priority class k at m. Equations (8) requires the
marginal net benefit of service s at priority class k to
be less than or equal to the total shadow cost of the
induced incremental waiting times; if less, then the
optimal Xisp=0.

Let vy ={7m mEM, kEK}. We conclude the
following:
Theorem 1: There exists a unique (x‘, w’, 7‘) that
maximizes W(X,w) subject to (6) and satisfies (8) and
(9.

We now come to the question of whether we can
support this welfare-maximizing allocation with a
price mechanism. That is, when will the vector of
user demands functions, x(r,w)={xi(r,w), i€I}, which
optimize W(x,w)? Recall from Section 3 that if
Xiskp(T,W)>0, then o Vi/ 8xiskp=c‘;5(r,w)=aas(p,k,w)+2m
a2 mg(P)rmk(q). Then, Xisp(r,w) will satify (8) iff Zm
20 # ma(P)ek(Q)=Lm L q £ ma(P) il 0 23/ 0 & mk] 7 mi-
The obvious solution is to set
ka(q)=ZJ[ 3 .QJ/ d ¢' mkq] 7 m (10)

In other words, the welfare maximizing rental
price for machine m with priority k must equal to
average cost of aggregate delays weighted by the
waiting-time and throughput tradeoff at m. given our
assumptions about Qu( - ;vm), the rental prices are
decreasing in priority k! rm>rac. Hence, we could
think of rqx as the base price, and (rmk—rmk) as the
premium for higher priority service.

However, (10) is not an explicit formula for rum,
since rmx enters the right-hand side via xgp(r,w) and

¢ mka(X(r,W)). We conclude the fol]owmg
Theorem 2. There exists an (', W) such that
xl(r w) maximizes u,(x.,r w) for all i€l (x(r w)
w) maximizes W(x,w), and wmk—Qk[tlJm(x((r w))
vm] for all mEM and k€K

In other words, given (r', w'), individual users
choose demands xi(r,w), which in turn generate
expected waiting-times w satisfying (6). Furthermore,
these demands and waiting times maximize welfare

W(x,w).

An alternative  interpretation in terms of
competitive equilibrium can be made. Let z denote
the welfare-maximizing aggregate flows from Theorem
1. Then, Thcorem 2 asserts that the ex15tence of
rental price r and expected waiting times w so (i)
demands xl(r w) equals optimal flows x and (ii)
these demands via the queues, (6), generate expected
waiting times w'. We can call this interpretation a
“stochastic" in that expected waiting times are correct
and "excess demand" m terms of flow rates (z— z)
is zero, where z and z are calculated using (6).

5. Cocnclusion

The issue we explored is the design of a
mechanism that can potentially achieve the highest
level of resource allocation. To achieve this goal, we
have successfully modeled a NCS with priority
queues and general stochastic arrivals as an economic
resource allocation problem. Our economic approach
has the added benefit of providing a sound basis for
evaluating NCS investment alternatives, using a
process analogous to free entry and exit in free-
enterprise  economies. All of these theoretical
advantages motivate further study. In addition, the
system impact and profitability of a new service
installed on a server, such as home shopping, could
be investigated via simulation in much the same way
as for infrastructure investments.

In future research we will consider alternative
priority queue systems and incentive compatibility
issues. We will also extend the theoretical model to
account for organizational constraints such as the
need to recover the cost of operating the NCS.
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