Performance Estimation of AS/RS using M/G/1 Queueing Model
with Two Queues
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Abstract
Many of the previous researchers have been studied
for the performance estimation of an AS/RS with a
static model or computer simulation. Especially, they
assumes that the storage/retrieval (S/R) machine
performs either only single command (SC) or dual
command (DC) and their requests are known in
advance. However, the S/R machine performs a SC or
a DC, or both or becomes idle according to the
operating policy and the status of system at an
arbitrary point of time. In this paper, we propose a
stochastic model for the performance estimation of a
unit-load AS/RS by using a M/G/1 queueing model
with a single-server and two queues. Expected
numbers of waiting storage and retrieval commands,
and the waiting time in queues for the storage and

retrieval commands are found.

1. INTRODUCTION

Many researchers studied the travel time for an
S/R machine under various storage assignment policies,
and proposed analytical model by using statistical
approaches [1-3]. Several researchers studied
sequencing of retrievals in order to reduce the travel
time of an S/R machine [4, 5]. However, all of these
researches do not reflect the dynamic nature of an

AS/RS, which is the realistic operating characteristic.
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Especially, they assumed that all storage and retrieval
commands are known in advance. Under consideration
of dynamic operating characteristic, their studies either
under- or overestimate for the performance of S/R
machine or can not provide feasible alternatives for the
important design factors of an AS/RS such as the
buffer size and utilization of S/R machine. The
analytical stochastic analysis was presented by Bozer
and White [6] for a mini-load AS/RS, and presented by
Lee [7] for a unit-load AS/RS using queueing theory.
Their analyses also do not reflect the dynamic aspect
of the system either, since they assumed specific
distribution types of service times.

In this paper, we present an analytical model for
the performance estimation of a unit-load AS/RS that
overcomes those drawbacks of the previous works.
This model employs a queueing theory and stochastic
analysis. It quickly estimate system performance for
existing system or a large number of design
alternatives such as expected numbers of waiting

storage and retrieval commands.

2. MODEL AND DEFINITIONS
2.1 Description of model and assumptions

The system, considered in this paper, is depicted
in Fig. 1. To analyze the model proposed in this

research, we make the following assumptions.



(1) Customers (commands) arrive at the system
according to the Poisson process with rates A, A, for
storage and retrieval commands, respectively, and their
arrival processes are independent.

(2) The services are independent and identically
distributed. The service times, S, for SC and DC are
generally distributed with mean E (S) = 1/p.

(3) The service follows FCFS (First Come First
Served) rule. If both customers exist in queue, the
server performs a DC. If only one of either storage or
retrieval commands exist, the server performs storage
SC or retrieval SC. Otherwise it becomes idle at the
I/0O station.

(4) The buffer sizes for each storage and retrieval
command are not limited.

We model the system as a two-dimensional
Markov process with a single server and two queues: a
storage commands queue and a retrieval commands
queue. That is, a state (i, j) means that there are J
storage commands waiting in storage queue and j
retrieval commands waiting in retrieval queue. Thus,
fore example, if the state is (i+1, 0) or (0, j+1), then the
server performs storage SC or retrieval SC. If no
command arrives during a service time, then the state
becomes (i, 0) or (0, j), respectively. Fig. 2 shows the

state-transition diagram based on these assumptions.

3. Qtnrace

A2 —> Retrieval

Sever (S/R machine)

Fig. 1 Queueing model with a single server and

two queues

2.2 Definitions

Let us define the following notations,

probabilities and Laplace-stieltjes transforms (LST):

An A2 Arrival rates for storage and retrieval
commands, respectively
7 : Service rate
s(x) :  pdf of service time §
59 : LSTofS
Ns(t) :  # of commands in storage queue at
time ¢
Npt) :  # of commands in retrieval queue at
time ¢
S.(1) :  Remaining service time for the
commands in service at time ¢
_  Pr(Ng)=0, Ng(t)=0, Sever idle), Qp
Q) = 1im,, . Qu(t)
Pij(x.t)dx = Pr(st)=i, Ngr(t)=j, Sever busy, x<
Si)<x+dx), i,j=0, 1,2, -
P,'J' (.x)dx = :!-Lrg Pl"j (x1 t)dx
. = -t
£, - fe P, ;(x)dx

Fig.2 The state transition diagram of system

3. SYSTEM ANALYSIS
Using the above notations, we can derive the
steady-state equations (1)~(S)(refer Appendix A). Let

us define the following generating functions:

Pi(zw,0)=3" 3" P, ©O)'w
P(z,w,0) =37 3 P, (0)z'w
P (i,w,0)= Z;OP,; (8)w’
P(i,w,0) = Z‘;o P (0)w’,i20

P(z,j,0)=Y P, ,(0)z', j20
i=0

Taking LST to the equations (1) ~ (5) and



applying the above generating functions, we get

(A + A, —Adz=A,w=0)P (z,w,0) =

(Z2 - 1)P(z,w,0) — £L[(1- 2)P(0,w,0) +
(1-w)P(2,0,0)-(1-2)(A-w)F,,(0)] (6)

From equation (6), we can derive the joint transform,

P’ (z,w,8), of the number of customers in storage

and retrieval queue and the remaining service time,
From P'(z,w,0)and letting 6=0, we obtain the

probability generating function (pgf) of the joint
distribution for the number of customers in storage and

retrieval queues as follow:

S" (A (1-2)+ A (I-w)-1
(A (1=2)+ 2, (1-w)Xzw-5" (4 (1-2)+ A, (1-w)))

[ = 2)P(0,w,0) + (1 - w)P(2,0,0) + (1 - 2)(1 - w)
£ (0 M

P’ (z,w,0) =

Then, we get the pgfs for the number of
customers of storage queue and for the number of

customers of retrieval queue from equation (7)

and by letting w=1, &0 and z=1, &=0,

respectively.

P(z10) = — A=D1 b, 0
Az =S (A4, (1-2) (8)

P w0y = — A=D1 544

A, =57(4,(-w)) ©
P10,0)=2P,(0), P(0,1,0)=
ZPOJ (0) and from the equation (8) and (9) we see

By definition,

P'(z1,0),., =1-Q,, P Q,w0),, =1-0,

From the definition and these results, we obtain,

AOLD)="2(1-Q) , PL00="220-Q)

which are constant values. Then, we get the
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distribution of the number of customers in both queues

by substituting these values to the equations (8) ~ (9).

= S (-2)-1  1-AES)
P'(z1,0)= . T (-
@10) Az-S (4 (1-2)) E(S) I QO)(IO)
= S (A, (-w)-1  1-A4,ES)
P w0 = 2 =2 -0,
GO Te-saaom T B TR

In order to get the mean number of waiting
customers in storage and retrieval queues, we need Q,
which can be obtained by the following theorem.
Theorem 3.1: Q, = Pr (sever idle). Then, Q, satisfies
the formula Qy = (I-p))(1-p;), where p;=A/u, i=1, 2.
Proof: Put the virtual servers 1 and 2 before the
storage and retrieval queues and assume each virtual
servers independently serve storage commands and
retrieval commands, respectively. The distributions of
the service times of virtual servers are equal to those of
the original server. Then, because these two queueing
systems  satisfy = work-conservation law, the
probabilities that each virtual servers are busy are

=Aiw, =1, 2. Put, also, the switch box between the
virtual servers 1 and 2. Then, let us suppose this switch

is off only when the two virtual servers are all idle.

Then, the following is obtained.
Pr(switchon) = Pr(server busy) =1-Q,.

Now, we have

Pr(switch on) = Pr (switch on | two virtual servers are
all busy) Pr (two virtual servers are all busy)

+ Pr(switch on | only one of two virtual servers is
busy)Pr(only one of two virtual servers is busy)

+ Pr(switch on ‘two virtual servers are all idle) Pr(two
virtual servers are all idle)

=Ly +{p= )+ (1= PO} 0-(1- ) - p3)
=Pt P PP

from which the theorem follows.



Let E (Ng and E (Np) be the expected numbers of
waiting customers in storage and retrieval queues,
respectively. Then, from the equations (10), (11) and

above theorem, E (Ng) and E (Ng) are calculated as

follow:

_ AE(S?) o (12)
E(Ns) 24, E(S)(1 - A,E(S)) (1-20)
E(N,) 4E(ST) 1-0,)13

T22,ES)1-4,E(S)
We also can get the waiting time in system for

each customer by the Little’s formula, L=AW.

4. CONCLUDING REMARKS

In this paper, we presented the probability
distribution, the mean number of waiting customers in
storage and retrieval queues and waiting time for each
customer in system. We tested the proposed analytical
model under the consideration of two cases that either
each arrival rates of storage and retrieval commands
are equal, 1,=4,, or not, 1,#4, with three types of
distribution for the service times: Exponential, Erlang
and Discrete. Form the experiments, we found that the
performance is accurate at a high traffic load and it is
robust to the distribution of service times. The largest
drawbacks in existing static analysis could not reflect
the dynamic aspects of system and could lead a larger

deviation from the corresponding simulation results.

However, the proposed model resolved these
weakness and it could be used for quick estimation of
the performance of an AS/RS and the design of an
AS/RS.
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Appendix A: Steady-state Equations (1) ~ (5)

0= "(/11 + lz)Qo + Po,o(o)

(1)

- ;x—P”(x) = (A, + AP (x)+ (A, + 2,)Q,5(x)+ (P, ,(0)+ Py (0)+ P (0))s(x) (2)
3)
- -f_P,-,.,(x) = - (A + A)Pio(x)+ AP0 (x)+ (Piio(0)+ Pia(0) s(x), i 21
A op (x)= =(A, + A,)Py  (X)+ A, Py (X) 4 (Py 1 (0) + P (0 s(x), j2 1 C)
- dx 0 = 1 2 0,j 280,501 0, +1 1,j+1 » ] 2
o (%)
- ‘i_P,J(x) = = (A, + AP, (X) + APy (x) + Ay P, (X)) + Py (0)s(x), 4, j 2 1
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