ProModel을 이용한 혼류 생산 Line Simulation

이 종복
제이비테크㈜

Abstract

급변하는 세계시장으로부터 다양한 요구에 유연하게 대응하기 위해서 대부분의 생산 시스템들이 혼류 생산 체계로 바뀌어 가고 있다. 이에 맞추어 자동화 시스템 또한 유연성을 고려하여 투자가 진행된다. 이런 자동화된 생산 시스템들은 효과적으로 도입하기 위해서는 다각적인 분석이 필요하다. 최근 들어 컴퓨터 시뮬레이션 기법의 발전으로 유용한 도구가 개발되어 많은 시간과 비용이 요구되는 자동화 시스템을 분석하는데 효과적으로 활용되고 있다. 컴퓨터 시뮬레이션의 복잡하고 어려운 시스템을 직접 변화시키지 않고 현실 시스템의 자료를 바탕으로 이를 컴퓨터에 모델링하여 분석하는 도구이다.

1. 서론

본 연구에서는 2 개의 사례를 연구대상으로 선정하였으며 Case 1은 자동차 생산 시스템 중 차체 라인, 도장라인, 조립라인과 연계되어있는 이동 시스템에 대해서 생산모델 중에 따른 자동화 신규 시스템 투자의 타당성 검증을 위한 것이며 본 연구의 주요내용으로 서술하였고, Case2는 자동차 생산 라인의 Hanger 시스템에 대해서 간략하게 개요 및 결과를 서술하는 것으로 하였다. 전체구성은 CASE 1에 대한 시스템의 개요(AS-IS Model 구조 vs TO-BE Model 구조), 모델 입력 조건 및 결과로서 구성되었으며 하단 부에는 CASE 2에 대한 개요 및 결과 순으로 구성하였다.

본 연구에 사용된 시뮬레이션 펌키지는 Window 환경에서 구동되며, 사용법 간단적이며 간단하게 모델링이 가능하며 Visual Discrete Event Simulation Package인 ProModel Ver.4.2를 사용하였다.

2. 개요

2.1. AS-IS Model

현재 차체 A 공장에서는 V100만 생산되고 있으며, 차체 B 공장에서는 V 카를 생산하고 있다. 이 모든 차체가 도장 A 공장으로 투입된다. 그러나, 향후 V200의 생산 시 혼류 생산 방식을 택하여, 차체 A 공장에서는 V200과 V100이 동시에 생산된다. 차체 A의 설비로는 44JPH까지 늘리고 V200의 일부 차체(6JPH 예정)를 도장 A로 투입할 예정이며, 나머지 40JPH는 도장 B로 투입할 예정이다.

[그림 1] AS-IS Model 구조도
2.1. AS-IS Model
도장 B 공장의 WBS 라인은 현재 다음 [그림 2]과 같은 구조로 되어 있다.

[그림 2] TO-BE Model 구조도

항후 WBS 라인과 현재 WBS 라인의 차이점은 다음과 같다.
1. V200 줄 일부 차량이 CJ 지역에서 도장 A 공장으로 투입된다.
2. 도장 B WHITE BODY IN 지역에서 나오는 빈 SKID와 도장 A WHITE BODY IN 지역에서 나오는 빈 SKID가 3단으로 빌어 도장 2 PAINT BODY OUT 비료로 이동된다. 이 비료가 일정량을 초과하면 3단 SKID를 그대로 PASS 시킨다.
3. 단 SKID를 차재 4 WHITE BODY OUT 비료로 바르 이동시키는 빈 SKID 라인을 신설할 예정이다.

2.2. 초기조건

[표 1] Simulation 초기 조건

<table>
<thead>
<tr>
<th>PBS1 지역 제공 대수</th>
<th>차재 4 실 JPH</th>
<th>차재 4 실 JPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS2 지역 제공 대수</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>WBS 지역 제공 대수</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>차재 4 SKID 비료</td>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>도장 2 SKID 비료</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>차재 2 SKID 비료</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>차재 2 SKID 비료</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>V100-V200 생산비율</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>V200의 Color 제약</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>

2.3. Simulation 실행
ProModel을 사용하여 모델링한 WBS 라인의 모습은 다음 [그림 3]과 같다.

3. 결론
ProModel에서 WBS 라인을 모델링하여 Simulation한 결과는 아래 [표 2]와 같다.

[표 2] ProModel Simulation의 결과

차재 4 WHITE BODY OUT	338
차재 2 WHITE BODY OUT	16
조립 2 PAINT BODY IN	307
도장 2 WHITE BODY IN	295
도장 2 PAINT BODY OUT	307
도장 1 WHITE BODY IN	46

CASE 2에서는 A,B,C,D의 4 가지 모델의 승용 차를 혼류 생산하는 라인으로써, 포털 입력조건으로 다음과 [표 3]과 같다.

결론으로 A,B,C,D별 제품 생산 혼합비에 따라 비료수, Lot Size, Frame 대수 등의 변수 값을 Excel Spreadsheets에서 변경하여 실행하였으며 현재 비료 능력 및 Frame 대수로 만족할 수 있었다.

CASE 2의 Model 입력 기초조건 및 Custom-designed parameter screens은 다음과 [표 3]과 같다.

일반적으로 환경에서는 시뮬레이션 단단가와 선임되여있는 경우 라인 직 접 관리자는 시뮬레이션에 대한 지식이 없기 때문에 시뮬레이션을 이용하여 의사 결정하는 데는 다소 어려움이 있다. 정보 공유 및 관리 차원에서 시뮬레이션 기초지식이 없더라도 시뮬레이션 내용을 쉽게 변경 및 결과를 볼 수 있도록 하기 위해 Customizing의 필요성이 있다.

ProModel에서 지원되는 OLE, 즉 Microsoft VBA(Visual Basic Application or ActiveX-enabled language)를 이용하면 다음과 같은 내용들을 이용할 수 있다.

1. Customized user interface with table inputs.
2. Custom-designed parameter screens
3. Automatic model creation from external data source (Excel spreadsheets, databases, or ASCII text files)
4. Software execution from another application

[표 3] Simulation 초기 조건 및 Custom-designed parameter screens

<table>
<thead>
<tr>
<th>Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>차량</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>SUM</td>
</tr>
<tr>
<td>MAIN JPH</td>
</tr>
<tr>
<td>MAIN BUFFER</td>
</tr>
<tr>
<td>ORDER TYPE</td>
</tr>
<tr>
<td>LOT SIZE</td>
</tr>
</tbody>
</table>

PRESS TO RUN SIMULATION => Execute