IMT-2000 시스템의 채널 할당 운용전략에 관한 연구
: web 트래픽을 대상으로

The Operation Strategy of Channel Allocation for the IMT-2000 System about the Web Traffic

이진혁 김재훈 차동원
KAIST 테크노경영대학원 경영공학

Abstract

본 논문은 IMT-2000 시스템 MAC 계층에서의 채널할당 운용에 관한 것이다. 기존의 2세대 무선이동통신
인 셀룰라나 PCS에서는 주로 음성이 주요한 트래픽이었기 때문에 채널 할당에 관한 운용전략이 강조했
다. 그러나 무선사간 데이터 트래픽의 급속한 증가는 IMT-2000 시스템의 동상을 가져왔고 이 시스템은
음성과 함께 데이터를 전송하기 때문에 2세대보다 채널할당이 복잡할 수밖에 없다. 데이터 트래픽 중
web 트래픽이 주요한 부분이 될 것으로 전망한다.

그래서 본 논문에서는 대상이 되는 트래픽을 web 트래픽으로 한정하고, web 트래픽을 크게 2개의 class
로 구분한다: streaming & non-streaming. 그리고 다시 각각의 class를 2개, 3개의 subclass로 나눈다. 이 구분과 함께 IMT-2000 시스템의 멀티미디어 트래픽 모델링을 사용하여 시뮬레이션을 했
다. 시뮬레이션은 전용채널, 공용채널의 수, type별 확률을 변화시키면서 여러 가지 상황을 고려해봤다.

1. 서론

앞으로 서비스되는 통신 서비스의 핵심은 고속 무선 통신기술로 언제, 어디서나, 누구에게도 통신할 수 있는 기술이며, 이를 위하여 각 선진국
들은 자국의 기술 연구개발과 표준화를 위해 많은 노력을 하고 있다. 이러한 가운데 국내외적으로
PCS의 IMT-2000으로의 전환을 통한 유무선 통합망
대역 개인통신망에 대한 연구가 활발히 진행 중이며, 현재 각종 표준화 단계 및 연구 진행을 통하여 기술 규격을 체계적으로 평가하는 단계이다.

IMT-2000 서비스는 음성신호의 전달보다 원활한 데이터 전송에 그 초점을 맞추고 있다. 즉, IMT-2000 시스템에서는 패킷 모드의 도입으로 대
부분 패킷 형태로 전송되는 데이터에 패킷 데이터 전송기술을 바탕으로 전송되고, 서버로부터의 데이터 전송으로 인해 변경 효율의 저하를 막기 위한 패킷 데이터 전송을 기반으로 하는 서비스를 개
발하고 최적 효율의 향상으로 가장 적절한 데이터 전송을 가능하게 할 수 있게 한다. MAC의 도입을 통한
패킷 모드 서비스가 가능해진 IMT-2000에서의 데이터 전송기술은 다중 사용자 통신을 가능케 할 수 있는 기회를 제공하는 데 도움이 될 것으로 생각되

IMT-2000의 무선환경은 지금까지 사용되어온 개인이동통신의 그것과 사뭇 다른 형태로 바뀌고 있
다. 기존의 셀룰라나 PCS에서는 무선환경에서 음
성 트래픽만 발생이 되었기 때문에 한 개의 채널을
활당함으로 모든 걸 묶고 따라서 활당할 수 있는
만은 모두 할당하고 나머지 시스템의 용량까지 바로
결정할 수 있었다. 그러나 IMT-2000 시스템은 음성
보다는 데이터의 증가에 인해 패킷 데이터를 추가
을 위해서 나온 시스템기인 때문에 채널할당을 기존의
방식대로 할 수는 없다. 서비스 이용자들의 행위는
정서적 추측만이 존재할 뿐 목적인 알림이 보이지
다. 이와 같은 불확실성이 서비스 제공자 입장에서 필요한 것은
이 서비스를 통해서 제공되는 트래픽의 특성에 관
련된 모델과 시스템의 적절한 채널 할당전문가로 할 수
있다.

따라서 본 논문은 무선환경에서의 패킷 데이터
트래픽 특성특성을 토대로 서비스 제공자 입장
에서 필요로 하는 시스템의 채널할당을 위한 시나
리오를 제안하고자 한다. 대상이 되는 패킷 트래픽
은 앞으로 무선사간으로 이동하는 모든 종류의 트
래픽을 대상으로 하는 것이 현실적으로 가능하였지만
일단은 앞으로 가장 많이 서비스의 World Wide Web 데이터 트래픽만을 대상으로 하겠다.

본 연구는 다음과 같이 구성되어 있다. 1장
에선 패킷 데이터 트래픽 모델링과 대상이 되는
Web 트래픽에 대해 살펴본다. 2장에서는 Web 트래
픽 대상 모델과 시뮬레이션 결과, 마지막으로 4장
에서 결론을 맺는다.

2. 패킷 데이터 특성 모델링

2.1 트래픽 특성 모델링

(1) 계층간 데이터의 흐름

UMTS 무선사간에서의 데이터의 흐름은 아래
그림과 같다. 상위계층의 PDU가 RLC PDU, MAC PDU
Transport block 으로 전이되는 형태로 데이터의 흐름
이 발생한다.
그림에서 N-PDU가 RLC 계층으로 처리되는 것으로 되어 있는데, 이 N 계층이 어떤 계층이 될지는 매우 불확실하다. UMTS에서의 데이터 처리 방안의 원형이라고 할 수 있는 GPRS의 프로토콜 구조에 대한 설명을 추가할 필요가 있다.

![그림 3-1 Web 트래픽 분류](image)

터를 포함한 큰 데이터가 대부분일 것이다. 이런 비대칭성으로 인해 환경에서의 채널 할당 문제는 별 문제 없고, RACH의 주로 이용할 것으로 예상된다. 따라서 논의에서 제외하고 reply 데이터의 순방향으로 전송될 때 기지국에서의 채널 할당에 관련한 운용모델을 다루기로 한다.

![그림 3-2 연구모형](image)

Web 서비스는 logical channel 인 DICH로 Layer 2까지 내려가게 된다. Layer 2에서 서비스 특성에 맞는 transport format을 결정하여 RLC PDU의 형태로 mapping 하고 이를 MAC 계층에 내려보낸다. 따라서 이러한 buffer로 도착하는 web 트래픽을 RLC PDU로 볼 수 있고, Data에 관련된 모든 DICH가 MAC-d에 우선적으로 날렸다고 볼 수 있으므로 MAC-d buffer를 보고 web 트래픽이 비어도 도착하는 것으로 생각할 수 있다.

본 연구의 핵심이 되는 문제는 바로 MAC-c buffer 이후의 MAC-c로 내려가지 않고, MAC-d로 내려가지 않고, Data에 관련된 모든 DICH가 MAC-d에 우선적으로 날렸다고 볼 수 있으므로 MAC-d buffer를 보고 web 트래픽이 비어도 도착하는 것으로 생각할 수 있다.

위 그림에서도 알 수 있듯이 많은 경우분포 중에서 전송률을 FACH가 주도한다. FACH와 DCH의 수는 표준화에서도 아직 결정되지 않았다. 하지만 본 연구에서는 채널 수가 동일한 경우에 별 문제가 되지 않는다. 모든 Web 트래픽은 여러 가지 모두 전송될 수 있다고 가정한다.

3.1 전략 1

class N 데이터는 공동채널로, Class S 데이터는 전용채널로 전송된다. 각 채널이 보다할 경우에는 Class N 데이터는 MAC-c buffer, Class S 데이터는 MAC-d buffer에서 각각 기다린다.

3.2 전략 2
Class N 데이터를 전송채널로 전송할 수 있다. Class N 데이터의 채널 할당 우선순위는 공동 채널, 전용채널 순이다. 공동채널이 아니면 연결된 경우에는 전용채널이 연결된지는 알아보고 있으며 전용 채널로 전송한다.

Class N 데이터의 경우, 공용채널과 전용채널이 모두 없을 때는 공용채널로 전송될 때의 대기 시간과 전용채널에서의 대기시간을 비교해서 짧은 채널 대기행렬에서 기다린다.

![그림 3-3] 운용전략 1의 순서도

![그림 3-4] 운용전략 2의 순서도

3.3 전략 3

전체 운용전략은 두 번째 전략과 반가지 만 차이가 있다. 남아있는 공동채널이 없고 전용채널이 있는 경우 두 번째 전략은 Class N 데이터를 남은 전용채널에 둘러서 보낼 수 없기 때문에 이 둘 채널에 민감한 streaming 데이터의 전송이 많이 늘어질 수도 있고, Class N 데이터가 전용채널 상으로 전송될 때는 아무런 데이터가 진행되지 않는 경우에도 무선자원이 채널을 계속 찾고 있기 때문에 남비가 생기게 된다. 그래서 이를 최소화하기 위해 다음과 같은 제약을 추가하기로 한다.

\[E(I(S)) < D(x_i), \quad i \in N \]

\(E(I(S)) \)는 Class S 데이터들이 도착하는 Interarrival time의 평균이다. Class S 데이터가 전용채널로 전송이 될 때의 duration time(D(x_i))이 평균 interarrival time보다 크면 위의 경우에선 전용채널이 남아있더라도 Class N 데이터를 전용채널로 바로 할당하지 않고 공동채널의 비중에서 대기하게 하는 운용전략이다. 부호의 방향이 반대라면 채널을 할당해 준다.

![표 4-1] 운용전략 3의 순서도

4. 예제

<table>
<thead>
<tr>
<th>Type</th>
<th>Probability</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>0.4</td>
<td>51200</td>
<td>7200</td>
</tr>
<tr>
<td>Type 2</td>
<td>0.5</td>
<td>11200</td>
<td>16000</td>
</tr>
<tr>
<td>Type 3</td>
<td>0.05</td>
<td>17200</td>
<td>16000</td>
</tr>
<tr>
<td>Type 4</td>
<td>0.03</td>
<td>51200</td>
<td>7200</td>
</tr>
<tr>
<td>Type 5</td>
<td>0.02</td>
<td>11200</td>
<td>16000</td>
</tr>
</tbody>
</table>

위의 표는 시뮬레이션에서 사용된 계수이다. 다음은 각 채널마다 벌 결과를 보여주는 그림이다.

X 축의 arrival time이라는 것은 인위의 시점 \(t \)를 0으로 기준으로 삼고 도착하는 패킷의 도착시간을 나타내는 것이다. Y 축의 waiting time은 어떤 패킷이 미치에 도착했을 때 자신이 기다리는 시간과 이전 패킷들이 비교에 기다렸던 시간들을 모두 더한 누적대기시간을 말한다.

결과_채널램프 I(DCH 4, FACH 1)

결과_채널램프 II(DCH 8, FACH 8)
체널타입 I, II로 보면 전용채널 DCH의 수가 늘어나면서 배타적으로 데이터를 처리하는 운용 전략 1의 성능이 많이 떨어지게 될 수 있다. 체널타입 III의 그림은 II와 유사하다. 그러나 공용채널과 전용채널의 수가 각각 3개 가까이 될 때는 아래 그림에 서와 같이 non-streaming 데이터를 넘어있는 전용 채널로도 전송하게 하는 운용전략 2의 성능이 오히려 나빠지는 것을 볼 수 있다.

결론, 체널타입 IV (DCH 5, FACH 5)

위의 시뮬레이션은 현재 유선에서도 같이 text, text와 image가 혼합되어 있는 web 페이지가 많은 것을 영주에 두 확률변동률을 부담하지 못하였다는 것이다. 하지만 앞으로 비디오와 오디오가 함께 제공되는 페이지가 증가할 경우에는 운용전략이 어떤 영향을 받을지 알아봐야 필요하다. 따라서 본 연구에서는 체널타입 1의 경우에 확률분포를 담아서의 민감도 분석을 했다. Type III, IV, V의 비율을 높여서 실험한 결과 전용채널의 수가 적었을 때의 경우에 있어서 각각 전략의 성능은 세 가지 전략이 비슷하게 나왔다.

5. 결론

본 연구에서 제안하는 운용전략은 모두 3가지 있다. poisson 분포로 도착하는 web 트래픽을 시뮬레이션을 통해서 각 운용전략을 비교하였다. Measurement 또는 waiting time을 사용하였다. 각 운용전략들의 개별적인 핏은 non-streaming 데이터와 streaming 데이터 각각 공용채널 (FACH)와 전용채널 (DCH)로 전송하는 것이다. 가장 간단한 전략 1은 non-streaming 데이터와 streaming 데이터를 배타적으로 각각 공용채널과 전용채널에서만 서비스 되도록 하는 전략이고 전략 2는 non-streaming 데이터를 허용적으로 공용채널과 전용채널에서 처리하도록 하는 전략이다. 전략 3은 2와 유사하지만 공용채널의 트래픽 성장을 고려하면서 non-streaming 데이터를 처리하는 방식이다.

일반적으로 공용채널의 수에 비해 전용채널의 수를 설계 시스템 구현 상 많이 배정할 수는 없다. 앞의 예제 중에서는 예제 1의 체널타입 I, II, III가 이런 경우에 속한다. 이처럼 경우 실험 결과는 운용전략 2, 3이 1보다 적은 자원을 나타내었다. 전략 2, 3 간의 전체적인 차이는 미미하지만 같은 자원의 정도를 나타내다면 공용채널과 전용채널 중 어떤 채널의 효율을 중요시 하는지에 따라 운용자는 전략 2, 3 중 하나를 채택할 수 있을 수 있다. 하지만 채널 수와 web 트래픽의 발생빈도를 변화시키면서 실험한 예제 1의 체널타입 IV, 예제 2의 경우

민감도 분석 결과 각 운용전략들은 차한 상황에 따라서 대기시간이 더 많이 걸리기도 하게 된다. 특히 web 트래픽의 발생빈도가 시간에 가설한 경우 streaming service를 많이 사용한다고 가정한 경우는 대기시간에 크게 증가하고, 각종 운용전략 간에 차이점이 생기지 않았다. 이것은 악화되어 유선 구간에서도 GoS에 맞게 서비스하기 했는 streaming 서비스를 수요가 유선에 미치 영향의 무선구간으로 적용해서는 결과가 생략된다.

참고문헌

[1] TS 25.301 radio interface protocol architecture
[2] TS 25.201 physical channel general description
[3] TS 25.211 physical channels and mapping of transport channels onto physical channels (FDD)
[5] TS 25.302 services provided by the physical layer
[8] TS 25.331 RRC protocol specification
[9] TS 25.353 UE functions and interlayer procedures in connected mode
[10] TS 25.394 UE procedures in idle mode