A Heuristic Algorithm for A Multi-Product Dynamic Production and Transportation Problem

이은식*,한종한**
*부경대학교 산업공학과, **부경대학교 산업공학과 석사과정

Abstract

This paper analyzes a dynamic lot-sizing problem, in which the order size of multiple products and a single container type are simultaneously considered. In the problem, each order (product) placed in a period is immediately shipped immediately by containers in the period and the total freight cost is proportional to the number of each container type employed. Also, it is assumed that backlogging is not allowed. The objective of this study is to determine the lot-sizes and the shipping policy that minimizes the total costs, which consist of ordering costs, inventory holding costs, and freight costs. Because this problem is NP-hard, we propose a heuristic algorithm with an adjustment mechanism, based on the optimal solution properties. The computational results from a set of simulation experiment are also presented.

1. 서론

본 연구는 유한계획기간하에서 수요가 동적으로 발생하는 다중제품에 대한 동적 생산계획 및 수송모형을 다룬다. 이 문제에서 수송비용은 한 종류의 화물 컴퓨터를 이용하여 생산된 다중제품들을 수송한다. 화물 수송비용은 사용된 컴퓨터의 수에 비례한다고 가정한다. 또한, 추후조달(backlogging)은 허용되지 않는다. 이 문제에서 발생되는 화물수송비용은 각 제품에 대한 생산비용(생산 준비비용 + 생산간접비용), 각 제품에 대한 재고비용, 그리고 화물 컴퓨터의 사용량에 따른 수송비용을 포함한다.

본 연구의 특징은 유한계획기간하에서의 수요를 만족시키면서 총물류비용을 최소로 하는 기간별 및 제품별 최적 생산계획 및 수송계획을 수립하는 것이다. 그러나, 본 연구의 대상문제는 NP-hard 문제이다. 따라서, 최적해가 갖는 해의 구조적 특성을 규명하고 이 성질을 근간으로 생산계획 및 수송계획을 효율적으로 찾을 수 있는 휴리스틱 알고리즘을 제시한다. 또한, 알고리즘의 효율성을 검증하기 위한 시뮬레이션 분석결과도 제시한다.

2. 수리모형

이은식(1998a)의 논문은 근간으로 다중제품에 대한 동적 생산계획 및 수송계획 문제로 확장할 경우, 본 연구에 적용한 다음과 같은 수리모형을 제시할 수 있다.

\[
\begin{align*}
& \text{Min} \sum_{t,i} \left(\sum_{k} c_k \cdot S_t \cdot (x_{t,k}) + \sum_{k} p_k \cdot x_t + \sum_{h} b_h \cdot I_0 + F \cdot y \right) \\
& \text{st} \quad I_t = I_{t-1} + x_t - d_t, \quad \forall t, \ i \\
& \sum_{t} x_{t,k} \leq W \cdot y_t, \quad \forall i.
\end{align*}
\]
$L_0 - L_T = 0, \quad \forall i,$ \hspace{1cm} (3)
$x_i \geq 0, \quad L_i \geq 0, \quad \forall i, \quad t,$ \hspace{1cm} (4)
$y_i = \text{비음정수}, \quad \forall i.$ \hspace{1cm} (5)

[기호정의]
$T = \text{계획기간의 길이}$
$t = \text{기간을 나타내는 점자} \quad (t = 1, 2, \ldots, T),$
$M = \text{생산량의 제한}$
$i = \text{제품의 종류}$
$j = \text{제품의 종류의 집합} (j = 1, 2, \ldots, M),$
$d_{ij} = \text{기간에 따른 제품의 수요량}$
$W = \text{컨테이너의 용량}$
$x_i = \text{기호에 사용되는 컨테이너 수}$
$y_i = \text{기호에 사용되는 컨테이너 수}$
$I_i = \text{기간에 따른 제품의 수} \quad (\text{비음정수})$
$S_{ij} = \text{제품의 수}$
$P_i = \text{제품의 대량생산비용}$
$F = \text{단위 컨테이너당 수송비용}$
$h_i = \text{제품의 대량생산비용}$
$f(x) = x \geq 0 \text{임의 1, 아니면 0}$

문제의 목적함수에서 각 제품의 단위당 생산비용 p_i가 시간에 따라 일정하고 $I_0 = I_T = 0$이므로, 목적함수에서 $\sum_{i=1}^{M} p_i \cdot x_i$를 제거하여도 최적화에 영향을 주지 않는다. 문제의 수리모형은 수송기간마다 다중제품을 혼합하여 수송할 수 있는 수송정의 수립을 허용한다. 따라서, 본 연구는 이러한 수리모형의 특성으로 인해 NP-hard 문제가 되며, Lee(1989)와 이웃석(1998)과 같이 정점(Extreme Point)들의 특성을 활용하여 최적해를 찾는 방법들을 이용할 수 있다. 본 연구에서는 이러한 NP-hard형태의 수리모형을 효율적으로 용할 수 있는 허리스틱 알고리즘을 개발한다.

3. 최적해의 성질 규명

문제의 제약식들은 (1)과 같은 베타워크로 표현될 수 있다. 그 베타워크에서 두 가지 형태의 흐름(flow)을 다음과 같이 정의한다.

1. 종합흐름: 마디(0)와 (1, 2, \ldots, T) 사이의 흐름
2. 개별흐름: 마디(1, 2, \ldots, T)와 ((1, 2), (1, M), (2, M), (2, 1), (2), 0)의 순서에 따라 형성되고 그 형태는 (1)과 같다.

(2) 개별수준들은 사이에 형성되는 경우
마다(1, 1), (1, M), (2, M)와 (2, 1), (2)의 순서에 따라 형성되고 그 형태는 (3)과 같다.

Wagner와 Whitin(1958)의 최적화 조건에 따라 $x_i = 0$로 만족하는 생산 및 수송 계획은 항상 극단호흡이 된다. 그러한 계획은 항상 가능한 형태가 존재한다. 반대로, $x_i = 0$이면 정리 1과 정리2의 성질을 만족해야 한다. 이를 설명하기 위해 다음과 같이 부분개별수효과가 제한된 것을 정의한다.

(1) 부분의 개별수효과
$nW \leq \sum_{i=1}^{M} x_i \cdot (n+1)W$
(1)은 비음정수이며,
시간T는 부분의 개별수효과이다.

\[L_0 - L_T = 0, \quad \forall i, \] \hspace{1cm} (3)
\[x_i \geq 0, \quad L_i \geq 0, \quad \forall i, \quad t, \] \hspace{1cm} (4)
\[y_i = \text{비음정수}, \quad \forall i. \] \hspace{1cm} (5)

세션 04.3.5

\[T = \text{계획기간의 길이} \]
\[t = \text{기간을 나타내는 점자} \quad (t = 1, 2, \ldots, T), \]
\[M = \text{생산량의 제한} \]
\[i = \text{제품의 종류} \]
\[j = \text{제품의 종류의 집합} (j = 1, 2, \ldots, M), \]
\[d_{ij} = \text{기간에 따른 제품의 수요량} \]
\[W = \text{컨테이너의 용량} \]
\[x_i = \text{기호에 사용되는 컨테이너 수} \]
\[y_i = \text{기호에 사용되는 컨테이너 수} \]
\[I_i = \text{기간에 따른 제품의 수} \quad (\text{비음정수}) \]
\[S_{ij} = \text{제품의 수} \]
\[P_i = \text{제품의 대량생산비용} \]
\[F = \text{단위 컨테이너당 수송비용} \]
\[h_i = \text{제품의 대량생산비용} \]
\[f(x) = x \geq 0 \text{임의 1, 아니면 0} \]

문제의 목적함수에서 각 제품의 단위당 생산비용 p_i가 시간에 따라 일정하고 $I_0 = I_T = 0$이므로, 목적함수에서 $\sum_{i=1}^{M} p_i \cdot x_i$를 제거하여도 최적화에 영향을 주지 않는다. 문제의 수리모형은 수송기간마다 다중제품을 혼합하여 수송할 수 있는 수송정의 수립을 허용한다. 따라서, 본 연구는 이러한 수리모형의 특성으로 인해 NP-hard 문제로 변환되며, Lee(1989)와 이웃석(1998)과 같이 정점(Extreme Point)들의 특성을 활용하여 최적해를 찾는 방법들을 이용할 수 있다. 본 연구에서는 이러한 NP-hard형태의 수리모형을 효율적으로 용할 수 있는 허리스틱 알고리즘을 개발한다.

3. 최적해의 성질 규명

문제의 제약식들은 (1)과 같은 베타워크로 표현될 수 있다. 그 베타워크에서 두 가지 형태의 흐름(flow)을 다음과 같이 정의한다.

1. 종합흐름: 마디(0)와 (1, 2, \ldots, T) 사이의 흐름
2. 개별흐름: 마디(1, 2, \ldots, T)와 ((1, 2), (1, M), (2, M), (2, 1), (2), 0)의 순서에 따라 형성되고 그 형태는 (3)과 같다.

(2) 개별수준들은 사이에 형성되는 경우
마다(1, 1), (1, M), (2, M)와 (2, 1), (2)의 순서에 따라 형성되고 그 형태는 (3)과 같다.

Wagner와 Whitin(1958)의 최적화 조건에 따라 $x_i = 0$로 만족하는 생산 및 수송 계획은 항상 극단호흡이 된다. 그러한 계획은 항상 가능한 형태가 존재한다. 반대로, $x_i = 0$이면 정리 1과 정리2의 성질을 만족해야 한다. 이를 설명하기 위해 다음과 같이 부분개별수효과가 제한된 것을 정의한다.

(1) 부분의 개별수효과
$nW \leq \sum_{i=1}^{M} x_i \cdot (n+1)W$
(1)은 비음정수이며,
시간T는 부분의 개별수효과이다.
(2) 재생점
제품이 대해 \(I_i = 0 \)이며, 기간\(t \)는 제품\(i \)에 대해 재생점이다.

<정리 1> 문제\(P \)에 대한 최적해는 각 제품\(i \)에 대한 임의의 재생점 사이에 제품\(i \)에 대해 최대한
하나의 부분충돌수송점을 갖는다.

<증명> 제품\(i \)에 대한 임의의 재생점 사이에 제품\(i \)에 대해 두개의 부분충돌수송점을 갖는 최적
해가 존재한다고 하고, 네트워크에서 볼 때, 이 경우에는 〈그림2〉와 같은 구조를 형성하게 된다.
이 구조가 극단효과를 가지하므로 \((0,1)\)과 \((0,2)\)의
호중 최소한 하나는 포화효과이어야 한다. 따라서
상기의 제안의 최적해가 아닙니다. 따라서, 증명은
완료된다.

<정리1>을 만족하면서도 <정리2>를 만족하
져 않으면 그 해는 정점이 아니다.

<정리 2> 문제\(P \)에 대한 최적해는 그 최적
해에 대해 있는 개별효과가 구조를 형성하지 않아야
한다.

<증명> 실험적해에 대해 있는 실험적효과가
<정리1>의 성질을 만족하고 〈그림4〉와 같은 형
태의 구조를 형성하려 한다. 이 경우에 개별호
흡에서의 응용이 제한된 효과를 갖지 않으므로 비
포화효과로 구성한 구조를 형성하게 된다. 따라서,
이 효과는 극단효과이 아니다. 그러므로, 증
명은 완료된다.

\[M_i(t) \]가 양수라면, 현재의 모드에 \(d_k \)을 포함
시킴으로써 비용절감을 기대할 수 있다. 그러나,
\(M_i(t) \)가 음수라면, 비용증가가 예측된다.
따라서, 생산 및 수송경로는 다음과 같은 절차를 따라 결정
된다.

단계1. \(t = 1 \), \(M \times T \) 수요행렬을 생성한다.
단계2. 현재의 모드에 기간 \(t \)에서의 수요를 포함한
다. 만약 \(t = T \)이면 이 절차를 종료하고
정점 매개변수록 한다.
단계3. \(M_i(t) \)값을 이용하여 각 제품에 대한 모드
를 결정한다.
단계4. 충돌수송량을 조절한다.
단계5. 각 제품에 대해, 현재의 모드에 포함된 수요
량을 수요행렬에서 차감하여 수요행렬
을 수정한다. \(t = t + 1 \)로 놓고 단계 2로 간다.

4.2 조정 매개변수

상기의 한계비용계수를 기초한 휴리스틱은
제한기능이 단순한 단위로 만 작용하여 해의
산출은 쉽고, 휴리스틱과 비슷하여 빠르고 상당히
효율적이라고 할 수 있다. 따라서, 휴리스틱 계
층으로 시스템과 같이 작용한다. 이를
이제로해석을 간략히 소개한다.

단계1. 생산준비비용의 경합효과를 평가하여, 비용
절감이 가능한 제품에 대해 접근 생산준비에
서서 생산량을 적정 생산량으로 옮긴다.

단계2. 수송비용의 경합효과를 평가하여, 비용절감
이 가능한 특정 부분충돌수송점에서의 수송
비용을 새로운 컨테이너의 운송을 요구하지 않는
범위에서 적용하여 가용의 부분충돌수송
점으로 옮긴다.

단계3. 기간 1에서의 과정계산의 일부를 새로운
컨테이너의 사용, 새로운 생산령과 재고부족의
발생이 허용되지 않는 범위에서 가용의 부분충돌수송점으로 옮긴다.

5. 알고리즘 성능 분석

제안된 휴리스틱 알고리즘에 대한 성능분석을
위해, 다음과 같은 실험조건을 실험하하여 사례
분석을 한다.

1) 제품수\(M_i \)는 2, 3, 6 등의 값으로 하고, 계획
기간\(T \)은 6, 8, 10 등의 값으로 한다.
2) 평균 \(\mu_i \) 수송비중 \(U(25,100) \) 를 따른다.
3) 표준편차 \(\sigma_i \)가 0.5%의 확률로 \(\mu_i \)과 \(\mu_i / 5 \)를 따른다.
4) 각 제품에 대해 수요는 \(M_i(\mu_i, \sigma_i) \)를 따른다.
5) 각 제품에 대한 생산준비비용은 다음과 같이 정
한다.

\[S_i = TS_i^2 \cdot \mu_i / 2, \quad TS_i = 1.3, 6, \]

여기서, \(TS_i \)는 \(EOQ \)의 Cycle Time을 의미한다.

6) 각 제품에 대한 단위당 재고유지비용\(B_i \)은 3.0
으로 동일하게 한다.
7) 컨테이너 적재공급 \(W_i \)는 100, 200, 300으로 정하
고 담배수는 수송비용 \(F \)는 다음과 같이 정한다.

\[F = i, \quad i = 1, 2, 3 \]

8) 상기의 주어진 실험조건에 대해 5개의 수요표본
을 발생시킨다.

- 63 -
Set-Up Problem with Dynamic Demand

<table>
<thead>
<tr>
<th>M</th>
<th>W</th>
<th>F</th>
<th>차이(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>1.96</td>
<td>2.38</td>
</tr>
<tr>
<td>300</td>
<td>199</td>
<td>2.87</td>
<td>4.11</td>
</tr>
<tr>
<td>600</td>
<td>2.61</td>
<td>3.66</td>
<td>4.90</td>
</tr>
<tr>
<td>200</td>
<td>2.66</td>
<td>2.37</td>
<td>4.51</td>
</tr>
<tr>
<td>600</td>
<td>4.55</td>
<td>4.82</td>
<td>8.47</td>
</tr>
<tr>
<td>1200</td>
<td>4.42</td>
<td>8.21</td>
<td>9.08</td>
</tr>
<tr>
<td>300</td>
<td>2.89</td>
<td>6.15</td>
<td>6.22</td>
</tr>
<tr>
<td>900</td>
<td>4.84</td>
<td>5.65</td>
<td>7.23</td>
</tr>
<tr>
<td>1800</td>
<td>6.24</td>
<td>12.96</td>
<td>7.76</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.67</td>
<td>1.51</td>
</tr>
<tr>
<td>300</td>
<td>152</td>
<td>2.69</td>
<td>3.32</td>
</tr>
<tr>
<td>600</td>
<td>2.89</td>
<td>2.78</td>
<td>4.06</td>
</tr>
<tr>
<td>200</td>
<td>2.06</td>
<td>2.97</td>
<td>2.84</td>
</tr>
<tr>
<td>600</td>
<td>3.81</td>
<td>6.13</td>
<td>6.10</td>
</tr>
<tr>
<td>1200</td>
<td>4.58</td>
<td>6.58</td>
<td>7.11</td>
</tr>
<tr>
<td>300</td>
<td>4.38</td>
<td>3.15</td>
<td>4.25</td>
</tr>
<tr>
<td>900</td>
<td>5.65</td>
<td>6.30</td>
<td>6.93</td>
</tr>
<tr>
<td>1800</td>
<td>8.26</td>
<td>8.16</td>
<td>9.06</td>
</tr>
</tbody>
</table>

상기와 같은 실험조건을 바탕으로, 제안된 휴리스틱 알고리즘의 효율성을 검증하기 위해 동일한 조건에서 CPLEX 6.02 페키지(Windows NT용)를 적용하여 산출된 최적해와 비교 분석한 결과는 <표1>과 같으며 휴리스틱 알고리즘의 효율성은 최적해와 비교하여 평균 4.85%내의 우수한 해를 제공하였다.

6. 결론

본 연구에서는 다양한 제품의 동적 수요를 만족시키면서 기간별 및 제품별 최적 생산계획 및 수송 계획을 수립할 수 있는 수리모형을 제시하고 이 수리모형의 최적해에 대한 구조적 특성은 규명하였다. 또한, 이 성질을 근간으로 생산계획 및 수송 계획을 효율적으로 찾을 수 있는 휴리스틱 알고리즘을 제안하였다. 또한, 시뮬레이션 분석 결과를 통해 제시한 알고리즘의 효율성이 우수함을 입증하였다.한편, 연구과제는 규모가 큰 다양한 문제들을 대상으로 제시한 알고리즘의 효율성을 검증하는 것이 다. 또한, 수송제품의 악체용량이 다른 경우의 확장된 문제에 대한 생산계획 및 수송계획을 효율적으로 찾을 수 있는 악략적 승수법을 이용한 알고리즘을 개발하고자 한다.

참고문헌

3. Lee, C. Y., "A Solution to The Multiple