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Abstract: In this paper, we show that a variation in
sampling rate give rise to system performance degradation
and propose a method to effectively reduce the error. We
first capture the variation as a first order autoregressive
(AR) model and project it as an additional sensor
measurement noise. By considering that the sensor
measurements include correlated noise, we perform a
decorrelation process and then apply a standard Kalman
filter (SKF) to estimate the target-state. As a result of the
two-step procedure, we achieve a significant reduction in
the target state estimation error.

1.Introduction

To achieve the best possible solution in target tracking
problem has been a great deal of interest in both defense
and civilian application [1][2]. Several issues have been
regarded as the principal topics in relation to the target
tracking such as the number of targets, the target’s
maneuvering, and the environmental effects on tracking
systems [3]. Yet, past research has overlooked a tangible
error source, the variation in sampling rate. There has
been a lack of concern on the error that can occur during
measurement data acquisition process. Preceding studies
have tended to take the measurement data for granted and
assumed that it is acquired exactly at a predetermined
sampling time. However, this is an ideal case. In
practice, the presence of variation in sampling rate is real
and can cause a significant error. For example, the
sensor’s physical factors such as thermal noise, acoustic
anomalies, electromagnetic interference, etc. can lead to
perturbations in sampling rate. In this paper, we postulate
that one of the sources of error is caused by the variation in
sampling rate when taking measurements. We then
explore the influences in variation of sampling rate to
target tracking error that may have been overlooked as an
item for possible improvement.

The perturbation in sampling rate simply adds to the
measurement noise in the form of correlated noise. With
this measurement modeling, we show how variations in
sampling rate can degrade the performance of a target
tracking system. We then propose a corrective filter
focused to solve the problem using a decorrelation process.

This paper is organized as follows. In Section 2,
we introduce the AR model that captures a variation in
sampling rate and suggest a new sensor measurement
model incorporating its perturbing effect. Section 3
presents the decorrelation process as a solution that reduces
the unexpected error caused by the perturbation in
sampling rate. This work is applied to tracking a fast
moving target (e.g. fixed wing aircraft) with a constant
velocity (Section 4). Section 5 presents the conclusions
of this paper and suggests the remaining issues for further
investigation.

2.Modeling of Variations

In general, sensor measurements are acquired at a
predetermined sampling interval. This assumption,
however, is based on an ideal case. In real applications,
variations in sampling rate can take place abruptly and
these variations give rise to unexpected measurement error.
When a moving target is being observed with a sampling
rate T, the possible observation error caused by a
variation A in 7T is shown in Fig 1. In Fig 1, « denotes
the target’s constant velocity.
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Fig. 1 Variations in sampling rate

We can assume that the variations in sampling rate
are originated from the same source in a specific
observation window. As a result of this assumption, we

can represent the variation at time k as a first order AR
model as follows:

A, =AN |+, (1)
where A, is a variation of sampling rate at time &

A is a correlation coefficient

7, is zero-mean white Gaussian noise

with covariance E[r]kan] =Ry

Sensor measurement data is directly related with
sampling rate. It is a reasonable postulation that the
variations in sampling rate are projected linearly to
variations in observation data. With this postulation, let
A, be a variation in sampling rate and p, be a variation
in observation data caused by sampling time changes at

time k. Then the relationship between sampling rate and
sensor measurement data can be described as follows:

P =ah, (2)
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Py = Apy_, +am, 3

where « is a velocity of a target.

The unexpected variations in sampling rate and their
effect in sensor measurement data are shown in Fig 2.
The undesirable effects of perturbations in sampling rate
can be captured by the modified sensor measurement data

Z,, in the form of an additional correlated noise term.

Provided that the target is moving with a constant velocity
and the sensor measurement comprises the positions of
target, the observed sensor measurements can be modeled

by:
Z,=HX,+p, +v,
=HX, +aA, +v, 4)

Xy Postion of a target
v, Velocity of a target

where Z, 1s a sensor measurement at time £,

X, is a target state vector,

H is a measurement matrix,
o is a target velocity,

A, is perturbation in a sampling rate
attime %,

Vi is a measurement noise.

The measurement noise is zero-mean white Gaussian
. . . T N .
and its covariance is E[v,v, ]=R,0,, while 77, and

Vv, are assumed to be uncorrelated.
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Fig. 2 Unexpected observation error

3. Decorrelation Process

When applying the SKF for the state estimation of a
target with the sensor measurements described above, we
need to decorrelate the noise of the sensor measurements.
Without considering the correlation aspect of measurement
noises, the SKF becomes unsuitable for estimating the

target states in its present form. To make the SKF become
effective in the process with undesirable correlated noise,
we apply a decorrelation process before filtering [4, 5, 6].
As a first step to decorrelate the measurement noise, we

define Y, as the modified measurement as follows:

Y, =2Z,-2Z,_, (6)
The sensor measurements in the SKF can be expressed as:
Z, =HX, +v, (7

where H is a measurement matrix, and

X, is a state vector of a target at time & .

Rearranging the above equations (4) ~ (7), we obtain the
new measurement equation as:
Y,=2,-7Z
=(HX, +aA, +v,)
—AHX, _ +aA,_ +v, )

k-1

=H(I -0 )X, +a(h, -4, )
+V, = AV, + AHO WS, |
=H(I - A0 )X, +an, +v, - v,

+ AHO'WE, (8)

Then
Y, =HX, +7, ®
where H=H(U-10™") (10)

7, = AHOWE, | +an, +v, —Av,_, (11)

Note that @ represents the state transition matrix, ¥ a
noise gain matrix, and &,_; a process noise. The process

noise is zero-mean white Gaussian noise with known
) T
covariance such that E[£,£, 1= R.5;,. Also the process

noise is uncorrelated with measurement noise. The new

measurement noise ¥, is desired to be white, but it is

currently correlated with the process noise &, ;. In most

practical situations, the new measurement noise can be
regarded as white with little degradation in performance
since the first term is very small. As shown in above
equations, after decorrelating the correlated measurement
noise, we can obtain the uncorrelated noise. As a result,
the SKF can be applied to the case with sensor
measurements having additional noise term due to

perturbation, by simply substituting Z,, H, and v,

with Y, , H ,and V, respectively.
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4. Computer Simulations

Computer simulations are performed to demonstrate
the influence of variations in sampling rate and to compare
the system performance between the SKF with and without
the decorrelation process. For experiments, we assume a
scenario with a target (fast moving fixed wing aircraft)
moving at constant velocity 100 m/sec and the sampling
rate is one every 0.05 second. The entire time duration in
which the sampling rate variations occur is 60 seconds
(1200 samples). The variance in measurement noise and
the variance in process noise are 100 m’ and 1 m’
respectively. The correlation coefficient is assumed to be
A= 0.6 and 0.8. The Monte Carlo simulations with 50
runs in each simulation are performed. The performance
of the filtering is evaluated by calculating the root mean
square error (RMSE) as follows:

M=

RMSE(k) = |~ (X, - X)) (12)

1]

X ,: is the 7 th estimate of target-state at time & in Monte

Carlo simulations and N is the total number of

simulations. Figure 3 and 4 show how the unexpected
perturbations in  sampling rate influence on the
performances of the tracking systems.
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Fig. 3 RMSE of Position (1 = 0.6)
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Fig. 4 RMSE of Velocity (4 =0.6)

The system performance comparisons between with

and without decorrelation process are shown in Figures 5, 6,
7, and 8 with A being 0.6 and 0.8 each, respectively. The
results clearly show that the SKF with decorrelation
process produce reduced RMSE than those of the SKF
without decorrelation process. In the SKF algorithm
where variations in sampling rate are not considered, the
target-state estimation error is increased. The results
shown by the figures indicate that we can reduce the effects
of the undesirable additional noise caused by variations in
sampling rate, by performing a decorrelation process as
described.
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Fig. 6 RMSE of Velocity (1 = 0.6)
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Fig. 7 RMSE of Position (4 = 0.8)
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Fig. 7 RMSE of Velocity (4 = 0.8 )

5. Conclusions

We explored the influences in the variation of
sampling rate to target tracking error by showing how
variations in sampling rate can degrade the performance of
a target tracking system. We projected the variations to
sensor measurement data and defined a modified
measurement model. We then designed a corrective filter
that performs a decorrelation process, which significantly
reduced the RMSE. Our simulation results showed that
the variations in sampling rate indeed causes the system
performance degradation. We also verified that the
resulting tracking error can be reduced by performing a
decorrelation process.
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