Proceedings of ITC-CSCC 2000, Pusan, Korea

Classification of TrueType Font Using Clustering Region

Seongah CHIN and Moonwon CHOO
Department of Multimedia
Sungkyul University, KOREA
#147-2, Anyang 8-dong, Manan-gu, Anyang-city, Kyunggi-do, KOREA
schin@soback kornet.net,mchoo@hana.sungkyul.ac.kr

Abstract: As we review the mechanism regarding digital
font generation and birth of TrueType font, we realizes that
the process is composed of sequential steps such as contour
fonts from glyph table. This fact implies that we propose
classification of TrueType font in terms of segment width
and the number of occurrence from the glyph data.

1.Introduction

The historical development of the TrueType font system
was originally designed by Apple Computer Inc.. We
discover the history of digital TrueType font system in
terms of origin of birth, developed procedures and
historical background. TrueType is the scalable font
technology built into Windows and Macintosh. Apple had
been developing what was to become TrueType from late
1987. A lead engincer, Sampo Kaasila completed his work
on TrueType in August 1989. Apple included full TrueType
support in its Macintosh operating System 7, in May 1990.
Microsoft first included TrueType into Windows 3.1 in
April 1991. It supported TrueType version of Times
Roman, Arial and Courier, which was same as Apple’s [1]
[2]. One similar work suggested based on typographical
features is related to optical font recognition [3].

Our intention is to explore the purpose of the font
density function over segment widths, which makes it
possible to classify TrueType font. As we look into True
Time font, each font sketches a unique shape consisting of
smooth curves and straight lines. A smooth curve is
defined by quadratic B spline curves, which can segment
into several quadratic Bezier curves holding three control
points. A straight line can be drawn by two end points.
Mathematically, we can derive and define the segment
width function, denoted by W, which is the shortest
distance between intersection points with segments of
individual fonts on a horizontal scan. If it is known each
height is distributed uniformly, we can apply the
fundamental theorem to obtain our density function in
terms of uniformly distributed height h and segment width
function W,

Finally, this approach makes the clustering region
solid and durable so that we can point out the exact
position of the region where the specific font lies. In order
to verify our idea, we will show the numerical approaches.

2. Theoretical View of Font Density Function

The main goal of this section is to describe theoretical
approaches to derive the font density function analytically.
This section utilizes the fact that the boundary function of
some scalable fonts (e.g. TrueType [2]) consists of

combinations of Bezier curves or straight lines. Therefore
the width W, of a typeface may be determined analytically.
Hence we will specify mathematical definitions of the
segment width W and its density function.

2.1 TrueType Font System

This section brings in the key concepts how the font
system works. The TrueType Font System is thought of as
the engine converting the information in a TrueType font
into a raster image suitable for display on screen or printer.

Prior to giving the explanation of the whole
procedure, we supply a glyph table, which contains the
data (x,y coordinate data) of the appearance of the glyphs
in the fonts as shown in Fig. 1. Each glyph in a TrueType
font is described by a sequence of points on a grid. While
two on curve points are sufficient to describe a straight line,
the addition of a third off curve point between two on
curve points makes a parabolic curve. On curve points
marked by ‘-* and off curve points by ‘®’ in Fig. 1.

The following steps illustrate the sequential
processes for displaying TrueType characters on raster
device [4].

® Scaling the outline information of glyph to the
requested size

® Grid fitting into scaled outline based on associated
instruction

® Decision of inside and outside by scan converter

® Rendering a bitmap image suitable for raster display

2.2 Boundary Generation

TrueType curves are defined by quadratic B-splines, which
are composed of a series of quadratic Bezier curves. Three
control points of which the first and the last are on curve
points and the middle one is the off curve point define
these curves. The off curve point is located at the
intersection point between two slopes of the curve at the
first and last points. Mathematically, the following
expressions give general parametric equation [10],[11].

P.t)

S ocrt (1 -t) e, @)

Pot) =Y ciii(l~t)a, 22

Where parameter ¢ is such that 0 <t <7 and P(¥) is the x
value and P,(#) is the y value and &, and &, are real
number defining the shape of the curve segment.

— 793 —

L\o

-1 g

Fig. 1.
Segment width types and Glyph Data

2.3 TrueType File Formats

On Microsoft Window platforms (Windows 95, Windows
98, Windows NT) TrueType font definition files are stored
in the Font subdirectory within the operating system
directory (usually WINDOWS or WinNT). The files have
extension “.ttf”. Any of these TrueType files may read or
viewed using the utility TTFDump. TTFDump is a
command line tool that dumps the contents of TrueType
font files. TTFDump parses and labels the contents of the
tables. Using TTFDump we can extract tables and data for
specific glyphs

2.4 Font Segment Width Function W

The purpose of this section is to define the segment width
in terms of Bezier curves and straight lines in the font
coordinate system, where x goes horizontally and y
increases vertically. Given a y position, we will endeavor
to find out intersection points with Bezier curves and
straight lines so that we can define the segment width W as

the function of y (denoted by 4 : height from this moment).

Notational Adjustment

We accounts for notations for the definition of segment
width W. A segment width can be determined by a
combination of the pair of Bezier curves and straight lines.
Thus, we need to adjust the notation to develop the
approaches as follows:

- Bezier curve on left side denoted by B,

- Bezier curves on right side marked by B,

- Straight line on left side promised by L;

- Straight line on right side called by L,

- Parameter t associated with left curve or line denoted by
4

- Parameter t associated with right curve or line denoted
byt

-y coordinate denoted by h

Now let us define W in terms of 4 (same as y). Given kA, we
note there exist four cases when a scan segment occurs as
follows:
Casel: (B, B,) 1ie both sides of a segment are
quadratic Bezier curves

(B, L,) i.e the left side is a quadratic Bezier
curve and the right side is a straight line

(L), B,) i.e the left side is a straight line and the
right side is a Bezier curve

(L),. L) i.eboth are straight lines

Case?2:
Case 3:
Case 4 :

An example of each segment case from the letter ‘T’ is
shown in Fig. 1. We are interested in deriving analytic
expressions for the segment width, , as a function of the
height, 4. i.e. W =g(h)

Definition of W for Case 1 : (B, B,)

We begin with Case 1 where the left Bezier curve B,
associates with three control points marked by (4, 4,), (B,
B), (C, C,) and B, defined by (4, 4}), (B% B}), (C3 C})
There are four defining equations this problem :

Pyt) =(1"tl)2Ay+ 2tl(1—t1)By+t12Cy 2.1
Px(tl) =(1“"tl)zAx+ 2tl(1—tl)Bx+t12Cx (2.2)
Py(tr) Z(I—tr)zA’y+ 2tr(1—tr)B’y+tr2C'y (23)
Px(tr) =(1—tr)2A'x+ Ztr(l—tr)B'x"'trzC'x (2‘4)
We are able to obtain the parameter variable ¢ applying 4,,
B,, C, into the equation and substituting P,(?) with h in
equation 2.1 as follows:

h=(1-t)"A,+ 2t(1-t)B, +t°C,

Then solve ¢ using quadratic solution and rewrite it as :

tl= ayi ﬂy-"ly'*‘h (2.5)
Where o= (A=-8)
(4,-2B,+C,)
8, = ~4,-2B,+C,
T (A,-2B,+C,)
2= LB A4) 4,

T (4,-2B,+C,)

Similar manipulation on equation 2.2 gives :

ti= a.t B.~Jx-+ Po(tr) 2.6)

(A.~ B.)

Where a.=
(A.- 2B.+ C.)

~4.-2B.+ C.

(A4.-2B.+C.)
_ (B,-4,)° B

Y C A 2B+ C.)

B.=

4,

From (2.5) and (2.6) we can merge both equations and
eliminate ¢#.(as mentioned before) into :

o —at Btk =t B gt P(t) @.7)

Similarly, the expression for t, will be reduced to :

t,=a'yi ﬁ’y-\/l'y‘*‘h (28)

From Fig. 2. wesee that P,(t) = P(t) + W
Therefore substituting this in equation 2.4 we obtain :

t=a' t B fx + P(ti)+ W 2.9)

A',v_ B'y
Where a',=
A',-2B',+ C"',
5 _A4 . -2B" .+ C",

A4',-2B',+C"’,

x' = (B ’_A’) - A,
A',-2B',+ C’,

, A'.- B',
a =
A'.-2B'.+C".
'B,_-\/A',—2B’,+C’,
T M4 - 2B+ C .
gl (B A

A'.-2B'.+C".

By equating equation (2.8) and (2.9) we eliminate ¢ (as
precisely stated) resulting in :

oa,-a.x g3, 1/,q,/',+h =t ¥+ P(t)+W

(2.10)
From the equation (2.7) and (2.10), we obtain :
(ay-ax) Jidd ? _
(“hrgmm) = g+ Pot) o)
(e ftim) = P Q1)

Subtracting (2.11) from (2.12) will eliminate P leaving
us with an expression relating # and W

(atb'\ g +h) - (atbyp+h) =y . +W

Where

(2.13)

/=(a'?—a") br=ﬂ_'y_

B B

a

H=M, b=ﬂ

B- 8.

Finally, the functional form of W appears as below,

W=(atb'y' +h) = (a£bp+h) =2+ 1 14

Now, let W be g(h) which is a complex function of its
argument A,

wo=g(h) (2.15)

Equation (2.14) allows us to compute the width, or
separation, between two Bezier curves along a horizontal
line. If the two Bezier curves are the boundaries of
typeface of a character then this equation gives us an
analytic expression for the width of the character as a
function of its height. An inverse function is not easy to
derive and numerical methods, such as Newton’s [12], may
be used to obtain the height if the character width is given.
Likewise, we can derive the other cases for Case2, Case3
ands Case4.

H
4
A=A A
AN)
O y 3
\ . BBR) BEE)
h >
B w B
GGG)
= x
Pt PL)=PH)+W

Fig. 2. Segment width W and its coordinate system
when both sides are Bezier curves, B, and B,

2.3 Font Density Function

We develop the font density function based on the segment
width function W from the previous section using the
fundamental theorem for the transformation of random
variables [13]. The rationale of for modeling the segment
width, w, as a random variables arises from the fact a
“randomly” positioned scan line through an image
(containing text) may intersect a text character and produce
a segment width of “random” length . Of course the widths
are not total random because they depend on a) the specific
letter encountered and b) the position on the letter where
the scan line crosses the letter. If we model the scan
position or height-h, as a uniformly distributed random
variable (Fig. 4) then the related segment width , w, is a
random variable with the density (Fig. 5) . When the shape

- 79 —

or typeface of the letter changes then the resulting density
functions changes. Consider the shape shown in Fig. 3
Scan linel produces three line segments, two of width w
and one with a width between 0 and W. Since some scan
lines produce more than a single segment width the density
of the height random variable is adjusted to accommodate
this. In this example,

f(h)= 7_11——(u(h)—u(h—H)) H=H,+H.+ 20, (210

Where u(.) is the unit step function and H is the total height
of letter T. The probability density of the segment width
will be a mixed density since w will a discrete and
continuous random variable. The wedged serif of two T
contributes to continuous part. The density is

H.+H,

JwIT)= H

5(w—w:)+%5(w—m)+—}111—‘;(u(w)—u(w—wa))
(2.17)

In general the height random variable , h, is converted by a
transformation, T, which is font dependent, into a segment
width random variable, w. Since scalable fonts are
mathematically defined the transformation for these fonts
is also (possibly) definable and therefore the probability
density (in theory) of w is desirable. In practice the inverse
function, T is required to express the density an in many
case the result are not tractable. We now proceed with
general derivation of density function of segment width
given a specific letter and a specific font.

As we saw in the previous section, the segment
width W can be fixed, in special case when both sides are
line segments and the slopes of the line segment are same
(1.e Case 4s). The other cases Case 1, Case 2 and Case 3,
and Case 4 represents situations where continuous segment
widths W where W increases or decreases as h varies. Thus,
segment density function will be defined as consisting of
two classes : continuous and fixed.

W, H,
N S
Wiy N H,
2 >
Fig. 3.
f(h) f.(wiT)
(H,+H,)/H
1/H H/H
H,/(Hw,)
1 i
H h w, W, W, w
Fig. 4. Fig. 5.

Class 1 : continuous segment widths W
Class 2 : fixed segment widths W

Sh) ; weeClassl heh
L.
an &
Class 1 : f(w:|L)=
otherwise

%5{»% ~c) ,;w:eClass2y =c, H:total height

Class2 : fywlL)= hiis height of fixedwidthw,

0 ; otherwise

Where fy(h) = I/H, h € h; associated with w;e Class 1

N
= > h,

j=1

with g for w; € Class 2.

In Fig. 1, we can distinguish continuous segment widths,
(Classl) from fixed segment widths Class 2 and some of
Case 4. In other words, Classl is grouped with Casel,
Case2, Case3 and Case 4, while Cased4s is belong to Class2
in Fig. 1. But Case 1 can be Class] when segment width
keeps fixed width. In addition, Case 4 probably can be
classified as Class] when segment width varies on heights
h. We note a total height H can be defined the total number
of heights assosiated with segment width w; The width
density function of a font , denoted by f{w), can be defined
based on the fact that some letters frequently appear in a
English sentence, whereas others seldom show up. In other
words, each individual letter has its own probability.

f(w)= 3

L=4.8,

P(L=j)f(wl|L=j)
(2.18)

Where P(L) is the probability of a letter in an English
sentence and f{w|L) 1s the segment width density function.

3.Experiments

We have leamed that TrueType font definition files are
stored in the Font subdirectory within the operating system
directory . We are able to extract glyph data using the
utility TTFDump that dumps the contents of TrueType font
files. TTFDump parses and labels the contents of the tables.
Using TTFDump we can extract tables and data for
specific glyphs. TTFDump may be download from the
following web site :
http://www.microsoft.com/typography/tools/tools.htm

Example : Dumping all tables of Times Roman (times.ttf)
to a text file (times.txt)

C:\>ttfdump times.ttf > times.txt
Example : Dumping all glyph data for Times Roman to a
text file (glyph.txt)

C\>ttfdump times.ttf -nx -tglyf> glyph.txt

Since an inverse function is not easy to derive so that

a histogram over the segment width provides the font
density distribution for that specific letter. Combining the

_— 796 -

Table 1. Times Roman Upper Case Glyph information

Letter Scan line count Maximal width 2" Maximal

width x count y count width segments size count size count
A 1441 1388 2195 203 464 96 330
B 1221 1357 1428 211 86 226 30
C 1222 1419 4085 70 105 226 26
D 1367 1357 1310 224 104 228 69
E 1163 1357 2417 193 620 741 73
F 1023 1357 3035 193 186 172 82
G 1379 1418 3138 196 428 236 118
H 1403 1357 2628 193 1288 582 75
I 582 1357 1357 193 911 581 40
J 744 1388 1703 193 698 194 23
K 1463 1356 2919 193 662 267 210
L 1167 1357 1873 193 772 615 39
M 1745 1357 4913 89 939 193 906
N 1478 1378 4494 89 1653 45 285
o 1329 1419 2590 230 231 - 229 133
p 1034 1357 1419 193 418 226 87
Q 1330 1789 1419 193 418 226 87
R 1350 1357 2958 240 246 241 138
S 902 1419 2831 37 27 45 26
T 1139 1357 1872 193 867 576 37
U 1447 1389 3115 193 569 91 594
v 1437 1388 2640 207 786 93 448
W 1891 1388 4682 88 926 98 422
X 1441 1357 2852 225 137 106 125
Y 1431 1357 2152 98 490 V 193 323
V4 1169 1357 1898 227,228,229 296 230 190

Pt over segrment wicth W - letter T: TR

g

1357

_&
jus)

1000

&

ol occurence

w0 700 *1*

‘ 300

g
N

N

| i 100

300 500 700 900 1100 W

—_
[
(=

Fig. 6. Histogram of “T” in Times Roman Fig. 7. The Clustering Region R

— 797 -

histogram data and the probabilities associated with
individual letters, we obtain the font density distribution
which specify the clustering region. The region in
Height/Width space where this density exceeds some
threshold (1) is the Clustering Region.

R = {(W, H)| (W, H) >1r} (2.19)
Table 1 shows statistical data for the Times Roman
uppercase glyph information. We note that higher numbers
of occurrences are found in scan line widths around 200. In
Fig. 6, we can see high appearance in scan line width at
200 for Times Roman “I”. Fig. 7 displays clustering
region R in terms of height over width space.

4. Conclusion

We propose classification methods of TrueType font based
on investigating glyph information. This results in
providing sufficient features in terms of font density
function since typeface is defined by its boundary on curve
points or off curve points. This approach makes it possible
to point out the exact position of the region where the
specific font lies building clustering region in scan line
width over height space. This work can extend to recognize
various typefaces called font recognition- system as future
work.

References

[1] Laurence Penny, “A history of TrueType,” TrueType
Typography Technical report, TrueType Development
Team at Apple, 1999

[2] L Penny, “A brief history of TrueType,” A article on
the TrueType from interview with Kassila, The
Principal Inventor, June, 1997

[1] A. Zremdini, R. Ingold, “Optical Font Recognition
Using Typographical Features,” IEEE Transaction on
Pattern Analysis And Machine Intelligence. Vol. 20.
No. 8, pp. 877-882, August 1998

[2] D Herman and Apple TrueType team, “The TrueType
Reference Manual,”, Apple Computer Inc. Feb, 1998

[3] “Microsoft Typography Quick Reference Guide
V.1.0,”
http://www.miscroft.com/typography/tools/tools.htm

(4] Donald E. Knuth, Digital Typography, Center for the
Study of language and information Stanford Junior
University, 1999

[S] Donald E. Knuth, Tex & METAFONT New direction
on Typesetting American Mathematics Society 1979

[6] S-H. F. Chuang, -C.Z Kao, “One-Sided arc
approximation of B-spline curves for interference —

free offsetting,” Computer-Aided Design 31(1999) pp.

111-118, 1999
[71 Kamran Etemad, David Doermann, and Rama
Chellappa, “Multiscale Segmentation of unstructured
Document Pages Using Soft Decision Integration,”
[8] R. H. Bartels, An Introduction to Spline for use in
computer Graphics & Geometric Modeling, Morgan

(9]

[10]

(11]

— 798 —

Kaufmann Publishers Inc. 1987

R. C. Beach, An Introduction to the curves and
surface of Computer-Aided Design, Van Nostrand
Reinhold 1991

M.L. James/GM. Smith. J.C. Wolford, “Applied
Numerical Method for Digital Computation, Harper
& Row, Publishers, 1985

A. Papoulis, “Probability, Random Variables and
Stochastic Processes”, Third Edition, McGraw-Hill,
Inc. pp. 92-102, 1991

