Proceedings of ITC-CSCC 2000, Pusan, Korea

An Abstract Object-Oriented Platform Model for an ATM Switching System

Young Man Kim
Department of Computer Science, Kookmin University
861-1, Chongnung-Dong, Songbuk-Gu, Seoul, 136-702, Korea
e-mail: ymkim@ kmu.kookmin.ac.kr

Boo-Geum Jung

Eun-Hyang Lee

Dong-Sun Lim

Switching & Transmission Technology Laboratory, ETRI
161-1 Kajong-Dong, Yusong-Gu, Taejon, 305-350, Korea
e-mail: bgjung@etri.re kr, ehlee@etri.re.kr, dslim@etri.re.kr

Abstract

In this paper, we present an abstract object-oriented plat-
form model suitable for the real-time distributed telecom-
munication system. The proposed platform is con-
structed upon the extended version of the real-time, dis-
tributed operating system, SROS(Scalable Real-time Oper-
ating System)[6], that is developed at ETRI and successfully
operated in the ATM switching system for several years.
The object-oriented software development and mainte-
nance methodology will resolve the current software cri-
sis in the area of telecommunication and switching systems
due to the everlasting maintenance about the huge amount
of the existing software and the ever increasing needs for
the better and new communication services. In general,
an object-oriented software platform realizes the object-
oriented methodology and possesses many good aspects like
high productivity, better reusability, easy maintenance, et al.
The platform is also designed to present the distributed mul-
timedia service in addition to real-time ¢vent delivery.
Recently, we have been implementing a couple of proto-
types based on the proposed platform. Reflecting the evalu-
ation results from these prototypes, the final platform spec-
ification will be determined.
Index Terms: communication software development, real-
time object-oriented software platform design, distributed
multimedia service, ATM switching system.

1 Introduction

Recent rapid evolution due to the technological and con-
ceptual innovations in the communication and switching
area has introduced software crisis again. The amount of
software implemented for network/terminal control and ser-
vice has become t0o enormous to be upgraded and main-
tained using conventional methodology. In particular, the
new spectrum of network/switching technologies and ser-
vices like real-time distributed multimedia service and mo-
bile computing invited the need to a new generation of soft-
ware development and the modification of the existing soft-
ware modules.

To meet this challenge successfully, a new software de-
velopment paradigm enhancing software productivity and
maintainability much more than the conventional one is
required in addition to the performance improvement of
software development environment. Currently, the most
promising methodology for leveling up software productiv-
ity and maintainability is known to be the object-oriented
paradigm. The object-based modeling and design sig-
nificantly improve a large software development process
throughout all stages from the specification decision to the
system implementation and maintenance. Furthermore, the
components in the objected-oriented software consisting
of a set of closely related objects can be reusable in the

other applications without recompilation, producing soft-
ware reusability.

Recently, the object-oriented distributed operating sys-
tem, as a first category of object-oriented development envi-
ronment, has been studied and prototyped in a large amount
among the universities and the research institutes[1, 3, 4].
Choices[3] provides a framework for a customized operat-
ing system so that it can easily generate a particular version
of OS by configuring the individual operating system object
class templates. Thus, Choices not only consists of a set
of objects, but also it provides object-oriented development
interface. On the other hand, Chorus/COOL[1] offers the
object-oriented software development and operation envi-
ronment implemented in the COOL layer over micro-kernel,
nucleus . Spring[4] modifies RPC mechanism to offer a
client/server object invocation. In Spring object model, an
object code itself is located together inside each client and
the common underlying state of the object is shared by the
server applications. Thus, the execution of object invocation
is processed faster than that of conventional object model.

Another category of object-oriented environment is a
middleware platform between an operating system and the
application that provides a common object interface across
networks[5, 8, 9]. As the representative middleware plat-
form specifications are standardized, an application module
is operative regardless of the kind of the particular imple-
mentation language used and the underlying operating sys-
tem.

The most widely used middleware is CORBA[8] that has
become a major platform in the object-oriented distributed
platform market. Whereas, in the telecommunication and
switching area, TINA[9] makes the general viewpoints of
ISO Reference Model for Open Distributed Processing(RM-
ODP)[5] concretely that are a set of guidelines for the design
of object-oriented middleware. TINA architecture provides
a set of concepts and principles to be applied in the specifi-
cation, design, implementation, deployment, execution and
operation of telecommunication software. In addition, a
software architecture in TINA defines the constraints that
should be applied during the entire software development
process. Frequently, a TINA-based platform implementa-
tion is built upon CORBA since two specifications are close
to each other. Thus, in some point of view, a TINA plat-
form can be considered as a real-time extension of CORBA
suitable for the particular need of telecommunication area.

CORBA utilizes Interface Description Language(IDL)
for describing a set of methods of an object exported to
the external object space, refered to as object interface. Al-
though the inner implementation of CORBA is open and a
vender uses its own proprietary structure and protocol, the
interoperability between two different vender platforms is
guaranteed via a common protocol called GIOP.

— 723 —

Although CORBA is a general-purpose object-oriented
platform so flexible that it can be applicable to many ma-
Jor application areas, it can not be employed in the telecom-
munication and switching area due to the following reasons.
First, any real-time concept does not exist in CORBA., There
is no way to declare QoS and the other performance-related
options about scheduling, channel demultiplexing, process
dispatching, buffer management, etc. Second, CORBA is
based on request-reply paradigm in the inter-object com-
munication that is suitable to client-server model. On the
other hand, in the telecommunication/switching system, an-
other object communication paradigms are necessary for
real-time object interaction, real-time event notification and
multimedia data stream. To provide real-time property, each
element composing the message processing and delivery in
a platform should be adjusted to have controllability with
optimized performance. Thus, to achieve this target, the un-
derlying operating system and network modules should also
support real-time characteristics.

In this paper, we present our approach to build an
objected-oriented distributed platform that supports the
real-time and multimedia application developments in the
telecommunication and switching system. In the next sec-
tion, an abstract object model for the real-time object-
oriented platform is proposed. This model is materialized
to the real-world object implementation model whose de-
tailed descriptions are presented in [7]. In Section 3, the
interfacing mechanism between an application program and
the platform is explained with some illustrative examples.
We conclude this paper in Section 4.

2 Abstract Object Model for Real-Time Object-
Oriented Platform

In this section, we present an abstract object modelf2] and
object interrelation in object space in which computer re-
sources like process, memory, network, node, etc., are invis-
ible. An object is a minimurm unit that provides some mean-
ingful functions to the outside world through one or more
interface(s) whose implementation details are unknown ex-
ternally. Let’s take an example of message object that is
responsible for electronic message management. The man-
ager object provides three interfaces: message post interface
that offers a message repository service in behalf of the real
destination object, message notification interface by which
the manager object informs the destination object of a new
message arrival, and message management interface that of-
fers the configuration mechanism by which the exported ser-
vices are configured. Fig. 1 depicts a message management
object with three interfaces.

2.1 Communication Modes between Objects

Communications between objects in the telecommunication
and switching systems are modeled into three modes. At
first, request/reply mode models the communication pattern
in a client/server application. A client object requests a
server object to do some service by invoking the correspond-
ing interface method exported by the server. After process-
ing the request, the server replies with the results to the wait-
ing client.

Second communication mode, event mode, represents an
event notification message delivery for which a source ob-
ject informs the destination object(s) of the occurrence of
an event. In the telecommunication/switching system, such
event should be delivered frequently in the real-time.

Third communication mode, stream mode, deals with
multimedia data that occur periodically and in a real-time.
Each time the voice/video data packet is produced, it should
be delivered to the destination object in the fashion satis-
fying its QoS requirements, for example, maximum delay
time, jitter, bandwidth, etc.

message message
1egistry arival
interface nofification interface
mMmessage
management
interface

Figure 1: The manager object diagram

2.2 Object Binding

When a client object wants to use a service provided by a
server object, the client should have an object pointer, ref-
ered to as interface reference (in short, reference), to invoke
the corresponding interface method. The activity obtaining
the reference of the server object interface is called bind-
ing. Binding mechanism is classified into two kinds accord-
ing to the operation initiative: implicit binding and explicit
binding.

In implicit binding, the communication medium bridg-
ing two objects are concealed from object space. On the
contrary, in explicit binding, a binding channel object (in
short, binding object) is exposed explicitly between the ob-
jects and all communications pass through the binding ob-
ject. Furthermore, real-time and QoS requirements for the
object communication in the telecommunication/switching
system are managed by the binding object. Implicit bind-
ing is utilized in request/reply communication mode for the
client/server application and explicit binding in event and
stream mode for the real-time event and multimedia stream.

There are three types of implicit binding : (i) static bind-
ing for which the server is already prepared before the client
initiates binding, (ii) dynamic binding for which the server
is not existent yet in object space, and (iii) indirect binding
for which the interface reference is transfered from another
client that already did binding with the server. On the other
hand, we can assort the explicit binding into three types ac-
cording to the binding initiator: (i) third-party binding, (ii)
client binding, and (iii) server binding.

In the following subsections, we will describe the binding
operations in detail.

22.1 Implicit Binding

Static implicit binding occurs when a server object already
registers itself to object registry before a client object tries
to bind with the server. Object registry is a system object
that manages all objects in object space. Fig. 2 dipicts the
static binding process.

An object obtains the references of the system objects like
object registry when it is created in object space. In the fig-
ure, server object also registers its interface(s) to object reg-
istry, for example, interface M (1). Later, when a client ob-
ject wants to use the service provided by interface M , it in-
quires the interface reference to object registry (2) and then
object registry replies with the reference (3). Finally, the
client object invokes one or more services provided by inter-
face M (4). Although a non-realtime object can be dynam-
ically created and destroyed, it is desirable that a real-time
object may be created statically and stay in object space per-
manently to omit the object creation overhead in the binding
process time. Thus, binding with a real-time server object is
typically static binding.

Fig. 3 depicts the dynamic implicit binding process. Ob-
ject registry keeps track of the information about the object
templates in addition to the active objects and its interfaces
in object space. Using the object template, object registry
can create a new object into object space. In the figure, a
client object inquires the reference of interface M (1). As

— 724 —

object
information
DB

ob ject
registry

@replies with
the reference

@queries
reference
of interface M

client
object

Figure 2: Static implicit binding process

object
regiztry
@inqueries
the reference
of interface
@replies with
. the reference

interface
request/reply

Dregisters
interface N

@sexrvice interface
request/reply

object
> information
bs
x, @finds the nonexiztance

of the server object
2" Qgets the object template

@creates the server
ob.isct

Figure 3: Dynamic implicit binding pro-
cess

no corresponding server object exists currently, object reg-
istry creates a server object using the object template (2,3,4).
When the server object finishes the initialization, it registers
interface M into object registry (5). The remaining sequence
is identical to that of static implicit binding.

Sometimes, a client object transfers the reference of some
server object to another client when the latter explicitly re-
quests it or the former wants to distribute its heavy workload
to its fellows. Indirect implicit binding creats a new channel
to the server object derived from the transfered reference.
Indirect binding process is depicted in Fig. 4.

In the figure, the server object is already bound to client
object X. When client object Z requests client X to inform
the reference of interface M (1), client X decides the refer-
ence transfer to client Z for the purpose of the load balanc-
ing and replies with the reference of interface M (2). Then,
client Z becomes connected to interface M and invokes some
interface method(s) (3).

2.2.2 Explicit Binding

The real-time communication in the telecommunica-
tion/switching system is realized with a sequence of tandem
communication components each of which should simulta-
neously satisfy the real-time/QoS requirement by allocat-
ing a set of available resources. To set up and manage the
real-time/QoS property of the communication components
explicitly, we introduce a binding object representing the
communication components. A binding object is a commu-
nication object interconnecting two objects whose binding

Q client objectz
r,

.
2\ @ service request/reply
replies with N\
the reference >,
fl
1
inteface M

client object x server object
Figure 4: Indirect implicit binding pro-
CESS

@ request the
reference of
interface M,

object
rogistry

Qinquires the references
of two waiting objects

Mregisters interface K
and vaite for the
binding request

a Dregisters interface N

and waits for the

binding request

@makes a
local bindig

nterf! aco
N

Figure 5: Third-party explicit binding
process between two real-time
objects

@ starts the real-tise communication

Interface <operation> CallManagement

int callconnect () QoS (500, 2, 0, 0);
void callreset ();
}option (PER_OBJECT, FIXED_PRIORITY, 10);

Figure 6: Interface CallManagement de-
scribed in IDL

is done by explicit binding.

Before explaining the explicit binding process in detail,
let us introduce another special object, binding object fac-
tory. A binding object factory is responsible for the creation
of a particular binding object that bridges two objects and
manages the real-time/QoS requirements. A responsible ob-
ject can make an order to the binding factory to construct the
corresponding binding object.

Explicit binding is classified into three types according to
the binding initiator: third-party binding, client binding, and
server binding. Fig. 5 shows the third-party binding process
triﬁgered by a third-party object P that binds two objects X
and Z.

In the figure, objects X and Z want a real-time data trans-
fer between them, e.g. multimedia packets or emergency
status messages. At first, they register their own interfaces
M and N and the corresponding real-time/QoS conditions
(1). Later, third-party object P asks object registry the exis-
tence of the waiting objects (2). Since the references of ob-
jects X and Z are returned from the registry, object P makes
a request to the binding object factory with the information
about the references and the real-time/QoS requirements of
objects X and Z (3). The factory examines the requirements
to discriminate whether they can be realizable with the avail-
able system resources. If it reaches a positive conclusion,
the factory creates a binding object (4) that has three ref-
erences: two for the communication and one for the real-
time/QoS management. Using the references, the factory
makes the local bindings between the binding object and
objects X and Z (5), and then sends the real-time/QoS man-
agement interface reference back to object P (6). Objects
X and Z wake up and initiate the communication (7). On
the other hand, object P, if necessary, dynamically controls
real-time/QoS properties via the management interface of
the binding object (8).

There are two variations to third-party explicit binding:
client binding and server binding. In the former(latter) case,
a client(server) takes charge of the role of the third-party
object and initiates the binding process.

— 725 —

class CallManagement : public virual Opinterface

public :
static Call_Management * imbind (Oplnterface *target);
static Call_Management * exbind (),
static Call Management * exbind (Interface *target),
virtual int callconnect();

virtual void callreset();
b
Figure 7: C++ class declaration for inter-
face CallManagement
€D
Cllent obiect e
O registry 5]
"."- @ %) o (] “aliManagemen
K & &gggac?‘ |mple°rgieer::t(auon
®
St i N 1
o F @ binding factory a:g‘f;gg%%‘i?“
H ® OlI1®
T
@)
binding chamel yobject

Figure 8: Third-party binding and the
subsequent method invocation

3 Platform Interface

The object interface exported from an object is declared
formally in an IDL interface file using Interface Descrip-
tion Language (IDL). For example, suppose that an applica-
tion program is developed using C++ language although the
other ones make no fundamental difference. The interface
file is compiled to an object class declaration code, a stub
code, and a skeleton code that are all written in C++. These
auxiliary files are put together with a set of client/server
source codes and compiled into a pair of executable client
and server codes. Fig. 6 shows the IDL declaration of in-
terface CallManagement exported from a call management
server in the telecommunication/switching system.

In the figure, two methods are exported with two kinds
of configuration options: QoS and real-time condition. First
method callconnect is appended with a QoS condition de-
manding that the average frequency of the method invoca-
tion and its average response time should be 500 per sec-
ond and 2 msec, respectively. Furthermore, according to
the option at the end of interface statement, the object pro-
cess that executes interface CallManagement should be al-
located in per-object basis with fixed priority 10. When an
object tries to bind to interface CallManagement, the corre-
sponding binding factory will determine the realizablility of
the QoS/real-time condition by examining the available re-
sources in the system. If it can be satisfied, a binding chan-
nel is constructed, otherwise waiting in the binding request
queue. The C++ class prototype corresponding to interface
CallManagement is shown in Fig. 7.

First three functions in class CallManagement are used
to create the binding channel objects according to implicit
binding, third-party binding, and client binding, respec-
tively. To explain the interaction between the application
objects and the platform, let’s follow a complete senario
about third-party binding and the subsequent method invo-
cation, as shown in Fig. 8.

First, the server component initializes itself by creating
an object that implements interface CallManagement (s1),

and its skeleton object (s2) that, in turn, registers itself to
object registry (s3). Next, the server enters bind-waiting
state (s4). Meanwhile, the client component calls method
exbind offered by class CallManagement (c1) that registers
the bind-related information necessary to construct a stub
object (¢2). Later, a third-party object asks object registry
whether there are a pair of client/server objects waiting for
binding to interface CallManagement (t1). If so, it calls the
binding factory (t2) to create a binding object (t3), make a
stub object in the client component and inform the stub of
the local binding object reference (t4). Finally, the third-
party object wakes up the client to start the invocation (t5).
Then, the client returns from method exbind with the stub
object reference (c3). From now on, the client can make any
sequence of invocations to the server. When the client calls
a method exported via interface CallManagement (1), the
request message is routed to CallManagement implementa-
tion object (2, 3, 4, 5). After processing the request, the
implementation object returns the result in reverse (6, 7, 8,

@ 9). In this sequence, the stub/skeleton objects are in charge

of marshaling/unmarshaling the parameter values and medi-
ate between the binding channel object and the client/server
objects, respectively.

4 Conclusion

In this paper, we proposed an abstract model of the real-
time object-oriented distributed platform that is designed for
the telecommunication/switching system. Currently, we are
implementing some prototype platforms.

In the overall design process, we considered platform per-
formance as the most important criterion to select the par-
ticular binding invocation mechanisms so as to minimize the
response time and the message delivery overhead. The de-
sign and implementation of the prototype platform maxi-
mally utilizes the optimal mechanism provided by the real-
time distributed operating system of ETRI, SROS[6], op-
erating inside the ATM switching system successfully for
several years.

References
[1] P. Amaral, R.Lea, and C. Jacquemot, "COOL-2 : An Ob-
ject oriented support platform built above the Chorus Micro-
kernel”, Proc. Int. Workshop on Object Orientation in Oper-
ating System, Palo Alto, Oct. 17-18, 1991, pp. 68-73.

[2] G.Blairand J. B. Stefani, "Open Distributed Processing and
Multimedia”, Harlow, England, Addison-Wesley Longman
Ltd, 1997.

[3] R. H. Campbell, N. Islam, and P. Madany, "Choices, Frame-
works and Refinement”, Computing Systems vol.5, no.3,
1992.

[4] G. Hamilton and P. Kougiouris, "The Spring Nucleus : A
Microkernel for Object”, Proc. 1993 Summer USENIX Con-
ference, pp.147-160, June 1993.

[5] CD 10746-1 — ITU Recommendation X.901, ”Open Dis-
tributed Processing-Reference Model-Part 1: Overview”.

[6] S.IJun, et al., "SROS: A Dynamically-Scalable Distributed
Real-Time Operating System for ATM Switching Net-
work”, GLOBECOM'98, Sydney, Australia, 8-12 Now.
1998, pp.2918-2923.

[7] Boo-Geum Jung, Young Man Kim, Eun-Hyang Lee and
Dong-Sun Lim, "Object-Oriented Platform Design for
an ATM Switching System”, ICC'2000, New Orleans,
Louisiana, June 18-22, 2000.

[8] CORBA, "The Common Object Request Broker : Architec-
ture and Specification(Release 2.0)”, The Object Manage-
ment Group, Framington, MA 01701-4568, USA.

[9] TINA-C, "Overall Concepts and Principles of TINA”, TINA
Baseline, TB_-MDC. 018_1.0_94, Feb. 1995

— 726 —

