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Abstract Adaptive Fourier analysis of sinusoidal sig-
nals in noise is of essential importance in many engineer-
ing fields. So far, many adaptive algorithms have been
developed for this purpose. In particular, a filter bank
based algorithm called constrained notch Fourier trans-
form (CNFT) is one of them, which is very aitractive in
terms of its cost-efficiency and easily controllable perfor-
mance. However, its performance deteriorates when the
signal frequencies are not uniformly spaced.

This paper proposes, at first, a new structure for the
CNFT, referred to as modified CNFT (MCNFT), to com-
pensate the performance degeneration of the CNFT for
noisy sinusoidal signals with non-uniformly spaced fre-
quencies. Next, a detailed performance analysis for the
MCNFT is conducted. Closed form expression of steady-
state mean square error (MSE) for the discrete Fourier
coefficients (DFCs) is derived. Eztensive simulations are
presented to demonstrate the improved performance of the
MCNFT and the validity of the analytical results.

1 Introduction

Adaptive estimation of sinusoidal signals or quasi-
periodic signals is a very important topic in many en-
gineering fields, such as digital communications, power
systems, control, sonar, biomedical engineering and pitch
detection in automated transcription, just to name a
few. Generally, the well-known DFT and short-time DFT
are simple and cost-efficient tools for these applications.
They are awkward, however, when the signals of interest
are nonstationary and/or the frequencies of interest are
arbitrary or not the integer multiple of the fundamental
frequency.

To combat the above-mentioned difficulties with the
DFT, a number of adaptive techniques have been devel-
oped. The Kalman filtering based techniques {1,2], the
recursive least square (RLS) algorithm (3], the simpli-
fied RLS (SRLS) algorithm [4,5], the LMS {6,7, and ref-
erences therein], the least mean p-power error criterion
based algorithm [8] are some of them. In particular, the
filter bank based techniques, the Fourier notch transform
(NFT) by Tadokoro, et al. [9] and the constrained NFT
(CNFT) by Kilani et al. [10], are quite attractive due to
their cost efficiencies and reasonable performances. The

steady-state performances of the NFT and the CNFT
for signals with uniformly spaced frequencies have been
conducted in [11] in detail. The NFT is very simple in
structure but generally not robust to additive noise. The
CNF'T is more robust than the NFT but its performance
degenerates severely when the signal frequencies are ar-
bitrarily spaced.

In this paper, we first propose a new structure for
the CNFT, referred to as modified CNFT (MCNFT), to
compensate the performance degeneration of the CNFT
for sinusoidal signals with non-uniformly spaced frequen-
cies. Next, we will conduct a detailed performance anal-
ysis for the MCNF'T, deriving steady-state mean square
error (MSE) of the discrete Fourier coefficient (DFC)
estimates. Extensive simulations will be performed to
demonstrate the improved performance of the MCNFT
and the validity of the analytical findings as well.

The rest of this paper is organized as follows. Section
2 presents the MCNFT. The performance analysis of the
MCNET is given in Section 3. Simulation results are
shown in Sections 2 and 3 whenever needed. Section 4
concludes the paper briefly.

2 The MCNFT

Consider a sinusoidal signal in noise

Q
z(n) = Z(ai cosw;n + b; sinw;n) + v(n) (1)

=1

where n denotes the discrete time instant. w;’s (¢ =
1,2,---,Q) are arbitrary signal frequencies that are not
uniformly spaced. Q is the number of frequency compo-
nents contained in the signal. v(n) is an additive white
Gaussian noise with zero mean and variance o2. The
CNFT used to adaptively estimate the DFCs, a; and b;,
is depicted in Fig.1, where
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In Fig.1, the steady-state output of the i-th channel is

yi(n) = a; cosw;n + b; sinw;n + v; (3)
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where v; is an additive noise signal at the ¢-th channel
output due to the additive noise v(t) residing in the input
signal z(n). The variance of this zero-mean noise can be
calculated using the theory of residues, as follows (see
Appendix for details)

02_{2(1‘/7)_2(1—.0)2 PP+p—2
1+p p*~2p2cos2w;+1

(4)

v, 1+p
(1 —p)® (1 4+ p)? + 4sin®w;

- }or.

1+p p*t—2pfcos2w; +1

Clearly, the noise v;(n) will be largely depressed by the
bandpass filter, and sinusoids with less noise will be avail-
able at the output of each channel, if the pole radius is
close to unit.

The sliding algorithm of the CNFT is given by

a;(n) = oo {y;(n — 1) sinw;n (5)
~y;(n)sinw;(n — 1)},
bi(n) = sinlw {-yi(n — 1) cosw;n (6)

+y;(n) cosw;(n — 1)}

However, the DFCs estimates generated by the above
algorithm have been found to contain sinusoidal fluctu-
ations at steady-state due to the leakage of frequency
components through the bandpass filters. This implies a
performance degeneration. A new structure is proposed
in Fig. 2 to modify the CNFT to remove the fluctuations
within the DFCs estimates, where

yi(njn — 1) = a;(n — 1) cosw;n + bi(n — 1) sinwn. (7)

The MCNFT also uses the above sliding algorithm to
perform the DFCs estimation. Fig. 3 shows a comparison
between the DFC estimates of the CNFT and the MC-
NFT. Clearly, the fluctuations with the CNFT disappear
completely with the MCNFT.

3 Performance of the MCNFT

In this section, we assess analytically the steady-state
performance of the MCNFT. First the estimation error
and then the estimation MSE will be investigated and
their closed form expressions will be derived. We also
provide some typical simulation results to validate the
analytical expressions obtained.

A: Estimation error

Using (3) in (5) leads to

a;(n) = a;+ = ! {vi(n — 1)sinw;n (8)
sin w;
—v;(n)sinw;(n — 1)},
bi(n) = b+ _1 {-vi(n — 1) coswn (9)
sinw;

+v;(n) cosw;(n — 1)}

Obviously, one gets easily from (8) and (9)
Elai(n) —a;] =0, Elbi(n) —b;] =0, (10)

which means that the MCNFT is unbiased. We have
found that the NFT and the CNFT are all unbised [11].
Therefore, the proposed MCNFT also shares the same
property the CNEFT possesses in the mean sense.

B: Estimation MSE

From (8), the MSE of the cosine DFC can be derived as
below.

Vo, = El(a(n) - a:)’]
- sinlwla%j_ - S B (men - 1)) (1)

Furthermore, it can be easily found that the MSE of the
sine DFC is the same as the MSE of the cosine DFC,

Vo = E[(bi(n) b)) =V, (12)

The auto-correlation of v;(n) can be calculated by (see
the Appendix for details)

E[v;(n)vi(n — 1)]
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Consequently, using (13) and (4) in (11), the MSE may
be ultimately expressed by
Ve, (14)
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Here, we have the following comments in order

1. The MSE is proportional to the variance of the ad-
ditive noise, which is a common property for many
adaptive algorithms.

2. It can be seen that the narrower the notch band-
width, i.e. the closer the pole radius p to unit, the
smaller the MSE will be.

3. The MSE depends on not only the variance of the
additive noise and the pole radius but also on the
signal frequency. This property can not be predicted
before the analysis is done. It is also clear that the
dependence of the MSE on the signal frequency will
become neglectable as the pole radius approaches
unit, since the 2nd and 3rd terms of the RHS of
(14) gets much smaller compared to the 1st term.

Here, we provide two simulation results in Figs. 4 and 5
to peek at the validity of the analytical expression for the
steady-state MSE. We see from Figs. 4 and 5 that the
theory follows the simulated points excellently. It may
also be noted that the steady-state MSE gets smaller in
almost a linear fashion as p approaches unit, and becomes
larger for small and large signal frequencies.
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4 Conclusions

A modified CNFT (MCNFT) structure has been pro-
posed and its steady-state performance has also been as-
sessed analytically. Simulations have been performed to
see the improved performance of the MCNFT and the
accuracy of the analytical expressions. Tracking analysis

of the CNFT and the MCNFT is left for further research.
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Appendix
A: Calculation of o2,

First, one has

o = (@ Hpp (=)

vy

(15)

277]

where C is a unit circle centered at the origin in the z-
domain. Using (2) in the above equation leads to

o2 = (16)
2 (o— )2% kiz+(p+1) wi+(p+1)z
27 P c 22+ pr;z+ p2 1 + priz + p222

Using the theory of residues, one gets

02 = Res(pe’) + Res(pe %) (17)
_ 1-»
T (1+p)(pt ~ 2p%cos 2w; + 1)

x {KZ + 4k;p(p+ 1) cosw; + (p + 1)?
Kk2p*+ 0 (p+1)%} oF
Putting «; into (17) yields (4) readily.

B: Calculation of E[v;(n)v;(n — 1)]

Let h;(k), k = 0,1,---, 00 be impulse response of the ¢-th
bandpass filter Hgp (z). One has

> hi(k)vi(n — k)

k=0

xihl m)v;(n—1—m)

m=0

= ihl
=0

Elvi(n)vi(n —1)] = (18)

k)h,(k - 1)o?
and

Z hi(k)hi(k —1) = éi—] ?{ HBP,i(V)HBP,i(%)dV‘ (19)

k=0 ¢

Using the theory of residues, we have

(1—p)? kipe? +(p+1)
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and finally,
Elvi(n)v,(n — 1)] (22)
= Res(pe’”?) + Res(pe™7*")
= (13).
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Fig.1 Filter bank implementation for the CNFT for si-
nusoidal signals with arbitrarily distributed frequencies.
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Fig.2 Filter bank implementation for the MCNFT for
sinusoidal signals with arbitrarily distributed frequencies.
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Fig.3 DFCs estimates and MSEs by the CNFT and the
MCNFT for sinusoidal signal with non-uniformly spaced
frequencies (SNR. = 10 [dB], p = 0.9, wg = 0.2m, 100
runs).
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Fig.4 Comparison between theoretical and simulated
MSEs of a DFC estimate by the MCNFT versus the pole
radius p (SNR = 10 [dB], wo = 0.27, 100 runs).
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Fig.5 Comparison between theoretical and simulated
MSEs of a DFC estimate by the MCNFT versus the sig-
nal frequency (SNR = 10 [dB], p = 0.9, we = 0.2m, 100
runs).

— 676 —



