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Abstract ~— A complex coefficient filter obtained by direct-
ly exchanging several reactance elements included in a real co-
efficient filter for imaginary valued resistors is described. By
using the proposed method, four varieties of complex coeffi-
cient filters are obtained. The stability problem is described.
Finally, the frequency responses of the proposed filters are

shown.

1. Introduction

Recently, many techniques concerned with complex
coefficient filters (complex filters) have been proposed
not only in the field of digital circuit but also in the field
of the analog circuit. Their frequency characteristics are
unsymmetrical with respect to the axis of D.C. It is well
known that this property is important for the applica-
tions to the orthogonal communication system and so
on.

There have been proposed many methods for designing
the complex filter in the analog field. One is the frequen-
cy shifting (FS) [1], which is the simplest method. This
method is carried out by shifting the poles and zeros of
the real transfer function in the direction of the frequen-
cy axis on the s-plane. The others are the ELHT [2] and
the ELLT [3]). These methods have the advantage that
we can immediately design a complex BPF which satis-
fies the required specifications. All the above methods
belong to the frequency transformation. The imaginary
resistors arise after the above transformations.

In this paper, we discuss complex filters obtained by
directly exchanging several reactance elements included
in the real coefficient BPF (real BPF) for the imaginary
resistors. The proposed method gives four varieties of
complex filters. Two of them are the same as the com-
plex filters obtained by using the conventional method.
The stability of the proposed circuit is described. Final-
ly, their frequency responses are shown.

2. Proposed Method

The imaginary resistor is a resistor whose element val-
ue is imaginary [1]. Its impedance Z,g(jw) is defined by
Zjr(jw) =JR (1)

where j is the imaginary unit and R is a real constant.
Equation (1) shows that the imaginary resistor doesn’t
make power dissipation and that the imaginary resistor

has the inductive property when R > 0 and the capaci-
tive property when R < 0. Thus, the imaginary resistor
can be regarded as a kind of reactance element.

In this paper, we discuss a complex filter obtained by
exchanging several reactance elements included in the
real filter for the imaginary resistor whose element value
is given by the following formulae.

A) The case of exchanging an inductor L for the imagi-
nary resistor jRp,

(2)

B) The case of exchanging a capacitor C for the imagi-
nary resistor jR¢

JRr = jwoL

JRc = 1/jweC (3)
= —j/wC

where wy is a real constant. Equations (2) and (3) pre-
dict that both of the real BPF and the complex BPF
have the similar frequency responses near wp. In this pa-
per, the complex filter obtained by applying the above
replacement to the real BPF whose center frequency and
bandwidth are given by wg and Bw, respectively, is de-
scribed.

Figure 1(a) shows the conventional LPF-BPF trans-
formation. When we apply the above replacement to
each one of 2 reactance elements included in the shunt
arms and the series arms of the real BPF, we have four
varieties of complex coefficient filters shown in Fig.1(b).
(1) Case 1 (FS)

The admittance Ypun: (jw) of the shunt arm of the real
BPF in Fig.1(a) are given by

wiC
JwBw

i @
Bw

The second term of the right side of Eq.(4) indicates
the admittance of the inductor whose element value
is Bw /w2C. Exchanging this inductor for the imagi-
nary resistor by using Eq.(2) gives the imaginary resistor
whose element value is j By /woC. The resultant admit-
tance Y punt (jw) leads to

Yshunt (]UJ) =

) jwC  wyC
Yishun = -  —J5— 5
1shunt (Jw) Bw ]BW ( )
On the other hand, the impedance Z;epies(jw) of the
series arm of the real BPF leads to
_gwl Wil

Zseries (]W) = Bw (6)

JwBw
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Figure 1: (a)Conventional LPF-BPF transformation, (b)Proposed transformations.

The second term of the right side of Eq.(6) indicates
the impedance of the capacitor whose element value
is Bw/w2L. Exchanging this capacitor for the imagi-
nary resistor by using Eq.(3) gives the imaginary resistor
whose element value is —jwoL/Byw . The resultant series
impedance Z)eries (jw) leads to

. jwL  wol
Ziseries (]w) = %‘;’ - ]%V— (7)
Let us consider the transformation indicated by Eq.(5).
In Fig.1(a), the admittance Y. pp(jz) of the shunt arm
of the normalized real LPF leads to

(8)

Yipr(jz) = j2C
Setting Yrpr(jz) = Yishunt (Jw) gives

z ——I—(w — wo)

= 5o ©

Similarly, when we consider the transformation indicat-
ed by Eq.(7), Equation (9) is obtained. Although the
reactance elements are replaced with the imaginary re-
sistor without taking the frequency transformation into
account, both of the shunt and the series arms have the
same frequency transformation. Figure 2 shows the fre-
quency transformation indicated by Eq.(9). This figure
shows that this transformation is equivalent to the con-
ventional FS [1]. The resulting frequency response be-
comes a complex bandpass characteristics whose arith-
metic center frequency and bandwidth are given by wy
and 2Bw, respectively.
(2) Case 2 (ELHT)

The first term of the right side of Eq.(4) indicates the ad-
mittance of the capacitor whose element value is C'/ By .
Exchanging this capacitor for the imaginary resistor
by using Eq.(3) gives the imaginary resistor whose el-
ement value is —jBw /wpC'. The resultant admittance

x ' x=Rew)
IS R
|riix)] 0 0
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Figure 2: Frequency transformation in case 1.

Yoshunt (jw) leads to
wic

JjwBw

JwoC'
Bw
On the other hand, the first term of the right side of
Eq.(6) indicates the impedance of the inductor whose
element value is L/Byw . Exchanging this inductor for the
imaginary resistor by using Eq.(2) gives the imaginary
resistor whose element value is jwoL/Bw . The resultant
shunt impedance Zaseries (jw) leads to

2
wgL

JjwBw

YZShunt(jw) = (10)

. , jwolL
42561‘i68(]w) = B:V (1])

In the same fashion as the case 1, both of the shunt arm
and the series arm come to have the same frequency
transformation. The relationship between z and w leads
to

Ldg W

Bw

(12)

r = —
wBW
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Figure 3: Frequency transformation in case 2.

Figure 3 shows the frequency transformation indicated
by Eq.{9). Now, the frequency transformation proposed
in the ELHT[2] is given by

wo

r=— — s (13)

W —wg

Because substituting wg = 0, w ¢ = w2/Bw and 25 =
—wy/Bw into Eq.(13) gives Eq.(12), this case is regard-
ed as the special case of the ELHT. The passband edges
of the resultant filter are given by w?/(wo + Bw) and
wd/(wo — Bw ), respectively.

(3) Case 3 (RICR configuration)
When the complex filter is synthesized by using the shunt
arm given by Eq.(5) and the series arm given by Eq.(11),
their frequency transformations differ from each other.
Thus, its frequency response is unfortunately distort-
ed. However, this filter is a very attractive configuration
from the viewpoint of its active realization because it in-
cludes no inductors. In this paper, we call this filter an
RiCR filter. The narrower the passband width By, the
smaller the distortion of the transfer response is.
(4) Case 4 (LRiR configuration)
We synthesize the complex filter using the shunt arm
given by Eq.(10) and the series arm given by Eq.(7). In
the same fashion as the case 3, its frequency response is
unfortunately distorted. Because this filter includes no
capacitors, we call this filter an LRiR filter.

3. Stability

The imaginary resistor can be replaced with an ideal
transformer [4]. By using this replacement, the 2-port
complex filter is converted into the 4-port network with-
out the imaginary resistors. The input and the output
signals are decomposed into their real and imaginary
components. Because both of the 4-port network and
the 2-port network are equivalent to each other, we have
the solution to the stability of the proposed circuits by
examining the stability of the 4-port network. All the
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Figure 4: Real BPF.
Table 1: Element values.
Element Value Element Value
Rs 1 Ry 1
C,Cs 1.0118 jRc1,jRes | —0.098834;
L, L3 0.0098834 || jRr1,jRLs 0.0988345
Cy 0.020119 jRc, —4.97055
Lo 0.49705 JRL, 4.97055

proposed complex filters consist of the imaginary resis-
tors and the positive valued passive elements. The 4-port
network converted by using the above method includes
the positive valued passive elements and the ideal trans-
formers only. This circuit is obviously stable. Thus, it is
the indirect proof, but it is concluded that all the pro-
posed circuits are stable.

4. Examples of Frequency Responses

In order to show the example of the frequency response
of the proposed filters, we use the real BPF which satis-
fies the following specifications.

Third-order Chebyshev BPF

Passband ripple i1dB
Geometric center frequency wp  10rad/s
Passband width By, 2rad/s

Figure 4 shows a BPF which satisfies the above spec-
ifications. The proposed complex filters are shown in
Fig.5(a)—-(d), respectively. Table 1 shows their element
values. Figure 6 shows their frequency responses. This
figure shows that all the proposed filters have the band-
pass characteristics. As predicted in Sect.2, the RiCR
and the LRiR filters don’t have the equiripple property.
Figure 7 shows the frequency response of the RiCR and
the LRiR filters whose passband width By, = 0.5rad/s.
From this figure, it is found that as the passband is nar-
rower, the frequency response of the passband ripple has
better equiripple property.

5. Conclusions

By directly exchanging the reactance elements includ-
ed in the real BPF for the imaginary resistors, we ob-
tained four varieties of tcomplex BPFs. Two of the pro-
posed filters are the same as the filter designed by us-
ing the conventional FS and ELHT. The others become
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Figure 5: Proposed filter circuits, (a)Case 1, (b)Case 2, L
(c)Case 3, (d)Case 4. 8 l .
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attractive filters which include no inductors or no ca-

pacitors. The stability of the 2-port complex filter is de- (b)

scribed. Finally, the examples of the frequency responses

of the proposed filters are shown. Figure 6: Frequency response (Bw =2rad/s), (a)Overall,
Further investigation is required to establish the de- (b)Enlarged scale figure near passband. '

sign method of the RiCR and LRiR filter which have the

equiripple characteristics.
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